Let $\vec{\tilde{e_i}}$ be an orthonormal basis in the non-inertial frame and $\vec{e_i}$ an orthonormal basis in the fixed frame. I will use Einstein notation to simplify the reading.
Let $\vec{x}$ be any vector. In the fixed frame, $\vec{x} = x_i\vec{e_i}$ where the $x_i$'s are the components of $\vec{x}$ in the fixed frame. Then
$\frac{d\vec{x}}{dt} = \frac{dx_i}{dt}\vec{e_i}$
In the non-inertial frame, $\vec{x} = \tilde{x_i}\vec{\tilde{e_i}}$. Then,
$\frac{d\vec{x}}{dt} = \frac{d\tilde{x_i}}{dt}\vec{\tilde{e_i}} + \tilde{x_i}\frac{d\vec{\tilde{e_i}}}{dt}$. This is is simply the chain rule, as the basis in the non-inertial frame is no longer constant.
Define $\omega_i = \mathcal{E}_{ijk} \vec{\tilde{e_j}}\cdot\frac{d\vec{\tilde{e_k}}}{dt}$. If you are not familiar with the levi-civita symbol $ (\mathcal{E}_{ijk})$, you should look it up. Let $\vec{\omega }= \omega_i \vec{\tilde{e_i}}$
Then you can show that $\tilde{x_i}\frac{d\vec{\tilde{e_i}}}{dt} = \vec{\omega} \times \vec{x}$.
So we get $\frac{d\vec{x}}{dt} = \frac{d\tilde{x_i}}{dt}\vec{\tilde{e_i}} + \vec{\omega} \times \vec{x}$.