It is known that the two components spinor $\chi$ is transformed under the $(\frac{1}{2},0)$ representation of lorentz group. This transformation can be written as $$\chi\rightarrow \exp[-\frac{i}{2}\vec\sigma\cdot\vec\theta]\chi\tag{1}$$ for rotation and $$\chi\rightarrow \exp[-\frac{1}{2}\vec\sigma\cdot\vec\zeta]\chi\tag{2}$$ for Lorentz boost.
For rotation, it can be verified that $$\exp[\frac{i}{2}\vec\sigma\cdot\vec\theta]\sigma^\mu\exp[-\frac{i}{2}\vec\sigma\cdot\vec\theta]=\Lambda^\mu_\nu\sigma^\nu,\tag{3}$$ where $\Lambda^\mu_\nu$ describes the corresponding transformation for Lorentz vector. However, it seems impossible to obtain the similar relation $$\exp[\frac{1}{2}\vec\sigma\cdot\vec\zeta]\sigma^\mu\exp[-\frac{1}{2}\vec\sigma\cdot\vec\zeta]=\Lambda^\mu_\nu\sigma^\nu\tag{4}$$ for boost, because $[\sigma^0,\sigma^i]=0$.
Thus, my question is how to obtain the relation $$\exp[\frac{1}{2}\vec\sigma\cdot\vec\zeta]\sigma^\mu\exp[-\frac{1}{2}\vec\sigma\cdot\vec\zeta]=\Lambda^\mu_\nu\sigma^\nu\tag{5}$$ for two components spinor, although this relation can be obtained for Dirac spinor easily due to $[\gamma^0,\gamma^i]\neq 0$.