I'm interested in calculating the operator norm of a Hermitian operator, say $B$, acting on the Hilbert space of square integrable functions. The context is I have an optical system in all its infinite dimensional glory. To be clear, by operator norm I mean the largest eigenvalue, or $||B||_{\infty}=\sup \{ \langle \psi \vert B \vert \psi \rangle | \langle \psi \vert \psi \rangle =1 \}$.
I have a neat expression for $B$ in terms of its Characteristic function / Wigner function. My question is whether anyone knows a neat and easy way of calculating the operator norm within the phase space picture. Of course, I could truncate the operator to small Fock numbers (assuming that this is a good approximation), work out the matrix in the Fock basis and crunch the numbers. However, I'm just curious whether there is a more elegant solution. I have in mind such equalities as $tr ( A ) = \int W_{A}(r) dr $ and $tr ( A^{\dagger} B ) = \pi \int W_{A}(r)W_{B}(r)dr$, which give a useful correspondence between Wigner functions and the operators themselves.... are these any such expressions for norms?
Being pessimistic I guess the answer might simply be NO! However, I thought it would be worth consulting the collective wisdom of TPSE.