Usually, Faraday's law of induction is derived from Maxwell-Faraday law. This law states that
$$ \nabla \times \mathbf{E} = -\frac{\textrm{d}}{\textrm{d}t}\mathbf{B}$$
Now, let's integrate this on the surface $S$ delimited by the closed loop $\Gamma$. We define the electromotive force $\mathcal{E}$ to be the circulation of $\mathbf{E}$ along $\Gamma$, so using Stokes theorem we get
$$
\iint\limits_S (\nabla\times\mathbf{E}) \cdot\textrm{d}\mathbf{S} = \oint\limits_\Gamma \mathbf{E}\cdot\textrm{d}\mathbf{l} = \mathcal{E}
$$
and Maxwell-Faraday law becomes
$$\mathcal{E} = -\iint\limits_S \frac{\textrm{d}\mathbf{B}}{\textrm{d}t} \cdot \textrm{d}\mathbf{S}$$
Now, we would like to get the derivative out of the integral, however we can only do that (mathematically speaking) if the surface $S$ is constant. So, in the case of a fixed circuit, with $\Phi$ the flux of $\mathcal{B}$ through $S$,
$$\mathcal{E} = -\frac{\textrm{d}}{\textrm{d}t}\iint\limits_S\mathbf{B}\cdot\textrm{d}\mathbf{S} = -\frac{\textrm{d}\Phi}{\textrm{d}t} $$
which is Faraday's law of induction, in the case of a fixed circuit. If $S$ is not constant, then we can't switch $\iint\limits_S$ and $\frac{\textrm{d}}{\textrm{d}t}$, so we can't use Maxwell's law.
First of all, we need to understand what the electromotive force $\mathcal{E}$ is. It is defined as the circulation of $\mathbf{E}$ along $\Gamma$, but why ? In fact, we should instead define it a the work done -
in the frame of reference of the conductor - per unit of charge along the circuit. Electrons in the conductor undergo the force
$$ \mathbf{F} = q(\mathbf{E}_{conductor} + \mathbf{v}_e\times\mathbf{B}_{conductor})$$
so the work done on one of them is
$$ W = \oint\limits_\Gamma \mathbf{F}\cdot\textrm{d}\mathbf{l} = q\oint\limits_\Gamma \mathbf{E}_{conductor} \cdot \textrm{d}\mathbf{l}
+ q\oint\limits_\Gamma (\mathbf{v}_e \times \mathbf{B}_{conductor}) \cdot \textrm{d}\mathbf{l} $$
However, the global motion of electrons in a wire is in the direction of the wire, so $\mathbf{v}_e$ and $\textrm{d}\mathbf{l}$ are colinear, which gives $(\mathbf{v}_e \times \mathbf{B}_{conductor}) \cdot \textrm{d}\mathbf{l} = 0$. Finally,
$$ W = q\oint\limits_\Gamma \mathbf{E}_{conductor} \cdot \textrm{d}\mathbf{l} $$
and we get back to the previous definition of $\mathcal{E}$.
Secondly, we will find the relation between the electromagnetic field expressed in two different frame of reference. Let's consider two frame $\mathcal{R}_1$ and $\mathcal{R}_2$, with $\mathcal{R}_2$ translating with a speed $\mathbf{V}$ relative to $\mathcal{R}_1$. Let's consider a charge $q$ with a speed $\mathbf{v}_1$ (resp. $\mathbf{v}_2$) in $\mathcal{R}_1$ (resp. $\mathcal{R}_2$). Since the electromagnetic force is a real force, its value doesn't depend on any frame of reference, so
$$\mathbf{F} = q(\mathbf{E}_1 + \mathbf{v}_1 \times \mathbf{B}_1) = q(\mathbf{E}_2 + \mathbf{v}_2 \times \mathbf{B}_2) $$
Also, we know that if we don't take the effects of special relativity into account $$\mathbf{v}_2 = \mathbf{v}_1 + \mathbf{V}$$
which gives finally
$$ \mathbf{E}_1 + \mathbf{v}_1 \times \mathbf{B}_1 =
\mathbf{E}_2 + \mathbf{v}_1 \times \mathbf{B}_2 + \mathbf{V} \times \mathbf{B}_2 $$
or, equivalently,
$$ \mathbf{E}_1 - (\mathbf{E}_2 + \mathbf{V} \times \mathbf{B}_2) =
\mathbf{v}_1 \times (\mathbf{B}_2 - \mathbf{B}_1)$$
This equation is true for any value of $\mathbf{v}_1$, so in particular we can take $\mathbf{v}_1$ and $\mathbf{B}_2 - \mathbf{B}_2$ colinear, so we finally get
$$\begin{cases}
\mathbf{B}_2 = \mathbf{B}_1 \\
\mathbf{E}_2 = \mathbf{E}_1 - \mathbf{V}\times\mathbf{B}_1
\end{cases}$$
Notice that this result is only valid for $V \ll c$, but it won't be an issue in our case...
Now, we can find what the law of induction is in the case of a moving circuit placed in a constant magnetic field. Let's consider a deformable closed wire $\Gamma$ where each portion $[l,l+\textrm{d}l]$ has a speed $\mathbf{V}(l)$, placed in a constant magnetic field $\mathbf{B}$, then ,using the definition of $\mathcal{E}$,
$$\mathcal{E} = \oint\limits_\Gamma \mathbf{E}_{wire}(l) \cdot \textrm{d}\mathbf{l}$$
however, thanks to the previous paragraph,
$$\mathbf{E}_{wire}(l) = 0 - \mathbf{V}(l) \times \mathbf{B}(l)$$
so $$ \mathcal{E} = - \oint\limits (\mathbf{V}(l) \times \mathbf{B}(l)) \cdot \textrm{d} \mathbf{l} $$
Let's write $\mathbf{V}_N$ (resp. $\mathbf{V}_T$) the normal (resp. tangential) part of $\mathbf{V}$, then $\mathbf{V}_T$ and $\textrm{d}\mathbf{l}$ are colinear, so
$$(\mathbf{V}\times\mathbf{B})\cdot \textrm{d}\mathbf{l} = (\mathbf{V}_N\times\mathbf{B})\cdot \textrm{d}\mathbf{l} $$
Let's write $\mathbf{n}$ (resp. $\mathbf{t}$) the direction of $\mathbf{V}_N$ (resp. $\mathbf{\textrm{d}\mathbf{l}}$) and let $\mathbf{p}$ be so that $(\mathbf{t},\mathbf{n},\mathbf{p})$ is a direct orthonormal base. Now,
$$\begin{align}
(\mathbf{V}_N\times\mathbf{B})\cdot \textrm{d}\mathbf{l} &= (\mathbf{V}_N \times (\mathbf{B}_T + \mathbf{B}_P))\cdot \textrm{d}l\, \mathbf{t} \\
&= (-V_N B_T \mathbf{p} + V_N B_P \mathbf{t} ) \cdot \textrm{d} l\, \mathbf{t} \\
& = V_N B_P \textrm{d}l \
\end{align}$$
However, $V_n\textrm{d}l\textrm{d}t$ is the area swept by the wire during $\mathbf{d}t$, and thus $V_n\textrm{d}l\textrm{d}t \times B_P$ is the magnetic flux swept during $\textrm{d}t$, so
$$\oint\limits_\Gamma V_N B_P \textrm{d}l = \frac{D\Phi}{Dt}$$
where I use $\frac{D\Phi}{Dt}$ to denote the flux swept per unit time, and, finally, we get the law of induction:
$$\mathcal{E} = - \frac{D\Phi}{Dt} $$
In the case of a simple wire falling, $\frac{\textrm{d}\Phi}{\textrm{d}t} = \frac{D\Phi}{Dt}$, however that's not always true (consider for example a rotating wire...).