Find the locus of points with no motion on a rigid body, if point A is fixed.
Without loss of generality place a coordinate system on A. Rigid body motion is defined if an arbitrary point maintains constant distance from A $$d = \sqrt{x^2+y^2+z^2}$$
This is found by setting $\frac{{\rm d}d}{{\rm d}t}=0$ which by the chain rule (with time derivative of $\frac{1}{2}d^2$) implies $$ x \frac{{\rm d}x}{{\rm d}t} + y \frac{{\rm d}y}{{\rm d}t}+ z \frac{{\rm d}z}{{\rm d}t} = 0$$
In vector form the above is $$\vec{r} \cdot \vec{v} =0$$ with $\vec{r}=(x,y,z)$ and $\vec{v} = \frac{{\rm d}\vec{r}}{{\rm d}t}$.
So the velocity field has to be perpendicular to the location vector. An obvious solution to the above is
$$ \vec{v} = \vec{\omega} \times \vec{r}$$
$$ \vec{r} \cdot (\vec{\omega} \times \vec{r}) \equiv 0 $$
So we have established that vector a velocity field of the form $\vec{v} = \vec{\omega} \times \vec{r}$ describes rigid body motion. This also imposes the limitation that $\vec{\omega}$ is constant throughout the body because otherwise the above expression wouldn't be zero. Try it.
Now let's look at the points parallel to $\vec{\omega}$ with $\vec{r} = \lambda \,\vec{\omega}$. The velocities are
$$\vec{v}_\parallel = \vec{\omega} \times (\vec{r}) = \vec{\omega} \times \lambda \,\vec{\omega} \equiv 0$$
Now let's look at points perpendicular to the direction of $\vec{\omega}$ with a distance $d$
$$\vec{r} = \lambda \vec{\omega} + d \vec{n}$$ with the properties $\| \vec{n} \|=1$ and $\vec{n}\cdot\vec{\omega}=0$
$$\vec{v} = \vec{\omega} \times (\vec{r}) = \vec{\omega} \times ( \lambda \,\vec{\omega} + d \,\vec{n}) = d\,(\vec{\omega} \times \vec{n})$$
which is a vector perpendicular to both $\vec{\omega}$ and $\vec{n}$. This implies a tangential (hoop) direction for the velocity with the magnitude increasing linearly with distance.
We call this motion rotation.
Here is an interesting fact. If at some arbitrary point located at $\vec{r}$ the velocity vector is $\vec{v}$ and the body is rotating with $\vec{\omega}$ then the instant axis of rotation is located at
$$\vec{q} = \vec{r} + \frac{\vec{\omega} \times \vec{v}}{\| \vec{\omega} \|^2}$$
The proof is that $\vec{v} = \vec{\omega} \times (\vec{r}-\vec{q}) \rightarrow$
$$\require{cancel}
\begin{align}
\vec{v} & = \vec{\omega} \times \left(\vec{r}-\left(\vec{r} + \frac{\vec{\omega} \times \vec{v}}{\| \vec{\omega} \|^2}\right) \right) \\
& = -\frac{\vec{\omega} \times(\vec{\omega} \times \vec{v})}{\| \vec{\omega} \|^2} = -\frac{ \vec{\omega}( \vec{\omega} \cdot \vec{v} ) - \vec{v} (\vec{\omega} \cdot \vec{\omega})}{\| \vec{\omega} \|^2} = \frac{ \vec{v} \| \vec{\omega}\|^2}{\| \vec{\omega} \|^2} - \frac{\vec{\omega}(\vec{\omega}\cdot\vec{v})}{\| \vec{\omega} \|^2} \\
\vec{v} &= \vec{v} -\frac{\vec{\omega}(\cancel{\vec{\omega}\cdot\vec{v}})}{\| \vec{\omega} \|^2} & \vec{v} \equiv \vec{v}
\end{align}$$