Lagrangian of the Lee-Yang model is given by:
$$ L=\frac{1}{2}f(q)\dot{q}^2 $$
where $f(q)$ is some differentiable function.
I am trying to derive the following expression for the transition amplitude:
$$ <q_ft_f|q_it_i>=N \int e^{\frac{i}{\hbar}\int{dt(L(q,\dot{q})-\frac{1}{2}\delta(0)\ln{f(q)})}} Dq $$
EDIT: I almost finished. So, I started with the most general expression for the transition amplitude: $$ <q_ft_f|q_it_i>=\int Dq \int Dp e^{\frac{i}{\hbar} \sum \Delta t(p_j\frac{q_{j+1}-q_j}{\Delta t^2}-H(p_j,\overline{q_j}))} $$ where $\overline{q_j}=\frac{q_j+q_{j+1}}{2}$ (I derived this for the Hamiltonian of the form $H=\frac{p^2}{2m}+V(q)$, but I understood it should be valid in general) and managed to obtain:
$$ <q_ft_f|q_it_i>= N\int\prod{dq_i} e^{\frac{1}{2}\sum_{j=o}^n (ln(\overline{q_j})-\frac{i}{\hbar}\Delta t\frac{(q_{j+1}-q_j)^2}{\Delta t^2}f(\overline{q_j}))} $$
In limes $n\to\infty$ I can identify the second term as Lagrangian, but I'm still confused with the delta function.