Let $M_2(\mathbb{C})$ denote the set of all $2\times2$ complex matrices. We also note that dim$(M_2(\mathbb{C}))=4$, because if $M\in M_2(\mathbb{C})$ and
$M=\left(
\begin{array}{cc}
z_{11} & z_{12}\\
z_{21} & z_{22} \\
\end{array}
\right)$, where $z_{ij}\in \mathbb{C}$,
then
$M=\left(
\begin{array}{cc}
z_{11} & z_{12}\\
z_{21} & z_{22} \\
\end{array}
\right)=z_{11}\left(
\begin{array}{cc}
1 & 0\\
0 & 0 \\
\end{array}
\right)+z_{12}\left(
\begin{array}{cc}
0 & 1\\
0 & 0 \\
\end{array}
\right)+z_{21}\left(
\begin{array}{cc}
0 & 0\\
1 & 0 \\
\end{array}
\right)+z_{22}\left(
\begin{array}{cc}
0 & 0\\
0 & 1 \\
\end{array}
\right)$.
The standard four Pauli matrices are:
$I=\left(
\begin{array}{cc}
1 & 0\\
0 & 1 \\
\end{array}
\right),~~
\sigma_1=\left(
\begin{array}{cc}
0 & 1\\
1 & 0 \\
\end{array}
\right),~~
\sigma_2=\left(
\begin{array}{cc}
0 & -i\\
i & 0 \\
\end{array}
\right),~~
\sigma_3=\left(
\begin{array}{cc}
1 & 0\\
0 & -1 \\
\end{array}
\right)$.
It is straightforward to show that these four matrices are linearly independent. This can be done as follows.
Let $c_\mu\in \mathbb{C}$ such that
$c_0I+c_1\sigma_1+c_2\sigma_2+c_3\sigma_3=$ O (zero matrix).
This gives
$\left(
\begin{array}{cc}
c_0+c_3 & c_1-ic_2\\
c_1+ic_2 & c_0-c_3 \\
\end{array}
\right)=\left(
\begin{array}{cc}
0 & 0\\
0 & 0 \\
\end{array}
\right)$
which further gives the following solution:
$c_0=c_1=c_1=c_3=0$.
It is left to show that $\{I,\sigma_i\}$ where $i = 1,2,3$ spans $M_2(\mathbb{C})$. And this can accomplished in the following way:
$M=c_0I+c_1\sigma_1+c_2\sigma_2+c_3\sigma_3$ gives
$\left(
\begin{array}{cc}
c_0+c_3 & c_1-ic_2\\
c_1+ic_2 & c_0-c_3 \\
\end{array}
\right)=\left(
\begin{array}{cc}
z_{11} & z_{12}\\
z_{21} & z_{22} \\
\end{array}
\right)$
which further gives the following equations:
$c_0+c_3=z_{11},~c_0-c_3=z_{22},~c_1-ic_2=z_{12},~c_1+ic_2=z_{21}$.
Solving these equations, one obtains
$c_0=\frac{1}{2}(z_{11}+z_{22}),~c_1=\frac{1}{2}(z_{12}+z_{21}),~c_2=\frac{1}{2}i(z_{12}-z_{21}),~c_3=\frac{1}{2}(z_{11}-z_{22})$.