$\frac{1}{c^2}\int_{\theta=-\pi/2}^{\theta=\pi/2} \frac{kM}{r^2}cos\theta ds=2\frac{kM}{c^2\Delta}$
An observation: $\cos\theta=\frac{\Delta}{r}$
$\frac{1}{c^2}\int_{\theta=-\pi/2}^{\theta=\pi/2} \frac{kM}{r^2}cos\theta ds=2\frac{kM}{c^2\Delta}$
An observation: $\cos\theta=\frac{\Delta}{r}$
Use
$s = \Delta \tan\theta \quad \Rightarrow \quad ds = \frac{\Delta}{\cos^2\theta}d\theta $
and
$r = \frac{\Delta }{\cos \theta }$
and insert it into your integral. What you get is
$\frac{1}{c^2} \intop_{-\pi/2}^{\pi/2}\frac{kM}{\Delta } \cos\theta d\theta = 2 \frac{kM}{c^2 \Delta} $.