0

In the section 19.1 "The Axial Current in Two Dimensions" of Peskin & Shroeder.
On page 657,

In free fermion theory, the integral of the axial current conservation law gives
$$ \int d^2x\, \partial_{\mu}j^{\,\mu 5} =N_R -N_L \quad (=0) \tag{19.30} $$

What's this?
If (19.30) is correct, it follows that in the ordinary four-dimensional case,

\begin{cases} \displaystyle N_R=\int d^4x \, \partial_{\mu} \bar{\psi} \gamma^{\mu}\left(\frac{1+\gamma^5}{2}\right)\psi =\int d^4x \, \partial_{\mu}j_R^{\,\mu}, \\ \displaystyle N_L=\int d^4x \, \partial_{\mu} \bar{\psi} \gamma^{\mu}\left(\frac{1-\gamma^5}{2}\right)\psi =\int d^4x \, \partial_{\mu}j_L^{\,\mu}, \\ \displaystyle N=\int d^4 \, \partial_{\mu} \bar{\psi} \gamma^{\mu}\psi = \int d^4x \, \partial_{\mu}j^{\,\mu}. \end{cases}

These look weird to me.

GotchaP
  • 545

2 Answers2

1

One correcrion: these definitions are the time integrals over the time derivatives of the quantities $$ N(t)=\int d^{3}\mathbf r J^{0}(\mathbf r, t) $$ under an assumption that the spatial currents vanishes at infinity, $$ \int d^{4}\mathbf r \nabla \cdot \mathbf J =\oint d\mathbf S \cdot \mathbf J \to 0 $$ With these assumptions, the integral $$ \int d^{4}x \partial_{\mu}J^{\mu} = \int \limits_{t_{0}}^{t_{1}} dt \frac{dN}{dt} $$ of a time derivative of $N$ is reduced to the values of $N$ at the boundaries $t_1, t_0$ of the integration, namely, $$ N(t_{1})-N(t_0) = \Delta N $$

Name YYY
  • 8,820
1

In four dimensions, The correct definition of $N_R ,\,N_L \, \text{and}\, N$ is \begin{cases} \displaystyle N_R=\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}P_R \psi =\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\left(\frac{1+\gamma^5}{2}\right)\psi =\int d^3 \mathbf{x} \, j_R^{\,0}\,, \\ \displaystyle N_L=\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}P_L \psi =\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\left(\frac{1-\gamma^5}{2}\right)\psi =\int d^3 \mathbf{x} \, j_L^{\,0}\,, \\ \displaystyle N=\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\psi = \int d^3 \mathbf{x} \, j^{\,0}\,. \end{cases} $N$ is the Noether charge $Q$ associated with the vector current conservation law.
Let $Q^5$ be the Noether charge associated with the axial current conservation law.
$$ Q^5= \int d^3 \mathbf{x} \, j^{\,05} =\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d^3 \mathbf{x} \,\left( \bar{\psi} \gamma^{0}P_R\psi - \, \bar{\psi} \gamma^{0}P_L\psi \right) =N_R-N_L $$ $$ \partial_0 Q^5=\partial_0 N_R - \partial_0 N_L= \int d^3 \mathbf{x} \, \partial_0 \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d^3 \mathbf{x} \, \partial_0 j^{\,05} = \int d^3 \mathbf{x} \, \partial_{\mu} j^{\,\mu 5}=0 $$ This is under an assumption that the spatial axial currents vanishes at infinity. $$ \int d^3 \mathbf{x} \,\partial_i j^{\,i5} =\oint d\mathbf S \cdot \mathbf j^5 \to 0 $$ $$ \therefore \Delta N_R - \Delta N_L =0 = \int d^4 x \, \partial_0 \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d^4 x \, \partial_{\mu} j^{\,\mu 5} $$

In two dimensions,
$$ Q^5= \int d x^1 \, \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d x^1 \,\left( \bar{\psi} \gamma^{0}P_R\psi - \bar{\psi} \gamma^{0}P_L\psi \right) =N_R-N_L $$ $$ \partial_0 Q^5=\partial_0 N_R - \partial_0 N_L= \int d x^1 \, \partial_0 \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d x^1 \,\partial_0 j^{\,05}=\int d x^1 \,\partial_{\mu} j^{\,\mu 5} =0 $$

Here the authors assume the spatial axial current vnishes at infinity.
$$ \int dx^1 \, \partial_1 j^{\,15} =\left[ j^{\,15}\right]_{-\infty}^{\infty} \to 0 $$

(19.30) should be replaced by $$ \int d^2x\, \partial_{\mu}j^{\,\mu 5} =\Delta N_R -\Delta N_L =0 .\tag{19.30} $$ So the sentence just below (19.30)

This relation implies that the difference in the number of right-moving and left-moving fermions cannot be changed in any possible process.

should be replaced by

This relation implies that the difference in the variation of right-moving and left-moving fermion numbers cannot be changed in any possible process.

The LHS of (19.39) should be also $$ \Delta N_R -\Delta N_L .$$

GotchaP
  • 545
  • "This is under an assumption that the spatial axial currents vanishes at infinity."

    It might be worth pointing out that in this specific example, the assumption is that the system has a finite length $L$, with periodic boundary conditions.

    – Petra Axolotl Dec 25 '21 at 04:22