In four dimensions,
The correct definition of $N_R ,\,N_L \, \text{and}\, N$ is
\begin{cases}
\displaystyle
N_R=\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}P_R \psi =\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\left(\frac{1+\gamma^5}{2}\right)\psi =\int d^3 \mathbf{x} \, j_R^{\,0}\,, \\
\displaystyle
N_L=\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}P_L \psi =\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\left(\frac{1-\gamma^5}{2}\right)\psi =\int d^3 \mathbf{x} \, j_L^{\,0}\,, \\
\displaystyle
N=\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\psi = \int d^3 \mathbf{x} \, j^{\,0}\,.
\end{cases}
$N$ is the Noether charge $Q$ associated with the vector current conservation law.
Let $Q^5$ be the Noether charge associated with the axial current conservation law.
$$ Q^5= \int d^3 \mathbf{x} \, j^{\,05} =\int d^3 \mathbf{x} \, \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d^3 \mathbf{x} \,\left( \bar{\psi} \gamma^{0}P_R\psi - \, \bar{\psi} \gamma^{0}P_L\psi \right) =N_R-N_L $$
$$ \partial_0 Q^5=\partial_0 N_R - \partial_0 N_L= \int d^3 \mathbf{x} \, \partial_0 \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d^3 \mathbf{x} \, \partial_0 j^{\,05} = \int d^3 \mathbf{x} \, \partial_{\mu} j^{\,\mu 5}=0 $$
This is under an assumption that the spatial axial currents vanishes at infinity.
$$ \int d^3 \mathbf{x} \,\partial_i j^{\,i5} =\oint d\mathbf S \cdot \mathbf j^5 \to 0 $$
$$ \therefore \Delta N_R - \Delta N_L =0 = \int d^4 x \, \partial_0 \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d^4 x \, \partial_{\mu} j^{\,\mu 5} $$
In two dimensions,
$$ Q^5= \int d x^1 \, \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d x^1 \,\left( \bar{\psi} \gamma^{0}P_R\psi - \bar{\psi} \gamma^{0}P_L\psi \right) =N_R-N_L $$
$$ \partial_0 Q^5=\partial_0 N_R - \partial_0 N_L= \int d x^1 \, \partial_0 \bar{\psi} \gamma^{0}\gamma^{5}\psi = \int d x^1 \,\partial_0 j^{\,05}=\int d x^1 \,\partial_{\mu} j^{\,\mu 5} =0 $$
Here the authors assume the spatial axial current vnishes at infinity.
$$ \int dx^1 \, \partial_1 j^{\,15} =\left[ j^{\,15}\right]_{-\infty}^{\infty} \to 0 $$
(19.30) should be replaced by
$$ \int d^2x\, \partial_{\mu}j^{\,\mu 5} =\Delta N_R -\Delta N_L =0 .\tag{19.30} $$
So the sentence just below (19.30)
This relation implies that the difference in the number of right-moving and left-moving fermions cannot be changed in any possible process.
should be replaced by
This relation implies that the difference in the variation of right-moving and left-moving fermion numbers cannot be changed in any possible process.
The LHS of (19.39) should be also
$$ \Delta N_R -\Delta N_L .$$