Where does the factor of $V/(2\pi\hbar)^{\text{dim}}$ come from in the classical partition function, e.g. $$Z_1 = \frac{V}{(2\pi\hbar)^3} \int d^3p \; e^{-\beta p^2/(2m)}$$
I know the hand-waiving arguments that a 'unit cell' in classical phase space should be a) on the order $\Delta x \Delta p \geq \hbar/2$ (Heisenberg) or b) the smallest increment of a plane wave with periodic boundary conditions ($\psi(0) = \psi(L) = 0$, ansatz $e^{ikx}$. Hence $2 \pi n = kL$ ($n \in \mathbb{Z}$) and $\Delta k = 2\pi/L$ or $\Delta p = 2 \pi \hbar /L$).
But why, really?