$\bullet$ 1. For the one-particle states, the completeness relation is given in Peskin and Schroeder, $$(\mathbb{1})_{1-particle}=\int\frac{d^3\textbf{p}}{(2\pi)^{3}}|\textbf{p}\rangle\frac{1}{2E_\textbf{p}}\langle\textbf{p}|$$ How does one derive this?
$\bullet$ 2. In expanding a general Fock state $|\Psi\rangle$ as $|\Psi\rangle=\mathbb{1}|\Psi\rangle$ can we approximate the identity operator as $$\mathbb{1}\approx(\mathbb{1})_{1-particle}?$$ If yes, when?
$\bullet$ 3. If not, how does one derive similar completeness relations for 2-particle states $|\textbf{p}_1,\textbf{p}_2\rangle$ (or in general, for $N$-particle states $|\textbf{p}_1,\textbf{p}_2...|\textbf{p}_N\rangle$)?