Coupling two non-interacting quantum systems $\:\alpha,\beta\:$ with angular momenta $\:j_{\alpha},j_{\beta}\:$ (no matter if orbital or spin) we reach to the following equation for the angular momentum $\:j\:$ of the composite system $\:f\:$
\begin{equation}
J_{\boldsymbol{n}}=\bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\right)
\tag{A-01}
\end{equation}
which, for the $\:\mathbf{n}\:$-components to be more clear, can be expressed as
\begin{equation}
\mathbf{n}\boldsymbol{\cdot}\mathbf{J}=\Bigl[\bigl(\mathbf{n}\boldsymbol{\cdot}\mathbf{J}^{\boldsymbol{\alpha}} \bigr) \boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}+ \mathbb{I}_{\boldsymbol{\alpha}} \boldsymbol{\otimes} \bigl(\mathbf{n}\boldsymbol{\cdot}\mathbf{J}^{\boldsymbol{\beta}} \bigr)\Bigr]
\tag{A-02}
\end{equation}
On above equations the symbol $''\boldsymbol{\otimes}''$ is used for the product of state vectors, spaces or operators. The vector $\:\mathbf{n}=\left(n_{1},n_{2},n_{3}\right) \:$ is of unit norm. The operators $\:\mathbf{J}^{\boldsymbol{\alpha}},\, J^{\boldsymbol{\alpha}}_{\boldsymbol{n}},\,\mathbb{I}_{\boldsymbol
{\alpha}}\:$ act on the $(2j_{\alpha}+1)$-dimensional Hilbert space $\: \mathsf{H}_{\alpha}\:$ of system $\:\alpha\:$ and on the same footing the operators $\:J^{\boldsymbol{\beta}}_{\boldsymbol{n}},\,\mathbb{I}_{\boldsymbol
{\beta}}\:$ act on the $(2j_{\beta}+1)$-dimensional Hilbert space $\: \mathsf{H}_{\beta}\:$ of system $\:\beta\:$, the symbol $\:\mathbb{I}\:$ being used for the identity. Finally the operators $\:\mathbf{J},\, J_{\boldsymbol{n}}\:$ act on the $(2j_{\alpha}+1)\cdot (2j_{\beta}+1)$-dimensional Hilbert space $\: \mathsf{H}_{f}=\mathsf{H}_{\alpha}\boldsymbol{\otimes}\mathsf{H}_{\beta}\:$ of the composite system $\:f\:$.
We write equation (A-02) for the three axes of a coordinate system
\begin{align}
J_{\boldsymbol{1}}=\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{1}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{1}}\right)
\tag{A-03a}\\
J_{\boldsymbol{2}}=\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{2}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{2}}\right)
\tag{A-03b}\\
J_{\boldsymbol{3}}=\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\right)
\tag{A-03c}
\end{align}
These three component equations can be expressed symbolically in one vector equation
\begin{equation}
\mathbf{J}=\bigl(\mathbf{J}^{\boldsymbol{\alpha}} \boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\bigr)+\left(\mathbb{I}_{\boldsymbol{\alpha}} \boldsymbol{\otimes} \mathbf{J}^{\boldsymbol{\beta}} \right)
\tag{A-04}
\end{equation}
Now we must check if this so constructed quantity $\:\mathbf{J}=\left({J}_{1},{J}_{2},{J}_{3}\right) \:$ of the composite system is a consistent angular momentum and the criterion for this is the validation of the equation
\begin{equation}
\mathbf{J}\boldsymbol{\times}\mathbf{J}= i \, \mathbf{J}
\tag{A-05}
\end{equation}
or by components
\begin{align}
J_{\boldsymbol{1}}J_{\boldsymbol{2}}-J_{\boldsymbol{2}}J_{\boldsymbol{1}}= i \, J_{\boldsymbol{3}}
\tag{A-06a}\\
J_{\boldsymbol{2}}J_{\boldsymbol{3}}-J_{\boldsymbol{3}}J_{\boldsymbol{2}}= i \, J_{\boldsymbol{1}}
\tag{A-06b}\\
J_{\boldsymbol{3}}J_{\boldsymbol{1}}-J_{\boldsymbol{1}}J_{\boldsymbol{3}}= i \, J_{\boldsymbol{2}}
\tag{A-06c}
\end{align}
To prove equations (A-06), let find a general expression for $\:J_{\boldsymbol{n}}J_{\boldsymbol{k}}\:$, where $\:J_{\boldsymbol{n}},\,J_{\boldsymbol{k}}\:$ the components of $\:\mathbf{J}\:$ parallel to the unit vectors $\:\mathbf{n}\:$ and $\:\mathbf{k}\:$ respectively. From equation (A-01) and the following multiplication rule
\begin{equation}
\left(\mathrm{A}_{2} \boldsymbol{\otimes} \mathrm{B}_{2}\right)\left(\mathrm{A}_{1} \boldsymbol{\otimes} \mathrm{B}_{1}\right)= \left( \mathrm{A}_{2}\mathrm{A}_{1}\right) \boldsymbol{\otimes} \left( \mathrm{B}_{2}\mathrm{B}_{1}\right)
\tag{A-07}
\end{equation}
we have
\begin{align}
J_{\boldsymbol{n}}J_{\boldsymbol{k}} & = \Bigl[\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \Bigl(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\Bigr)\Bigr] \left[\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{k}}\right)\right]
\nonumber\\
& =\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+\Bigl(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\Bigr)\left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{k}}\right)
\nonumber\\
& + \Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)\left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{k}}\right)
+\Bigl(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\Bigr)\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)
\tag{A-08}
\end{align}
so
\begin{equation}
J_{\boldsymbol{n}}J_{\boldsymbol{k}} =
\Bigl[\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}\Bigr)\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr]+\Bigl[\mathbb{I}_{\boldsymbol
{\alpha}}\boldsymbol{\otimes}\Bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{n}}J^{\boldsymbol{\beta}}_{\boldsymbol{k}}\Bigr)\Bigr]
+\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{k}}\Bigr)
+\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\Bigr)
\tag{A-09}
\end{equation}
Permutation of $\:n\:$ and $\:k\:$ yields
\begin{equation}
J_{\boldsymbol{k}}J_{\boldsymbol{n}} =
\Bigl[\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\Bigr)\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr]+\Bigl[\mathbb{I}_{\boldsymbol
{\alpha}}\boldsymbol{\otimes}\Bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{k}}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\Bigr)\Bigr]
+\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\Bigr)
+\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{k}}\Bigr)
\tag{A-10}
\end{equation}
Subtracting (A-10) from (A-09)
\begin{equation}
J_{\boldsymbol{n}}J_{\boldsymbol{k}}-J_{\boldsymbol{k}}J_{\boldsymbol{n}}=
\Bigl[\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}-J^{\boldsymbol{\alpha}}_{\boldsymbol{k}}J^{\boldsymbol{\alpha}}_{\boldsymbol{n}}\Bigr)\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr]+\Bigl[\mathbb{I}_{\boldsymbol
{\alpha}}\boldsymbol{\otimes}\Bigl(J^{\boldsymbol{\beta}}_{\boldsymbol{n}}J^{\boldsymbol{\beta}}_{\boldsymbol{k}}- J^{\boldsymbol{\beta}}_{\boldsymbol{k}}J^{\boldsymbol{\beta}}_{\boldsymbol{n}}\Bigr)\Bigr]
\tag{A-11}
\end{equation}
For $\:n=1\:$ and $\:k=2\:$ above equation (A-11) gives
\begin{align}
J_{\boldsymbol{1}}J_{\boldsymbol{2}}-J_{\boldsymbol{2}}J_{\boldsymbol{1}} & =
\Bigl[\overbrace{\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{1}}J^{\boldsymbol{\alpha}}_{\boldsymbol{2}}-J^{\boldsymbol{\alpha}}_{\boldsymbol{2}}J^{\boldsymbol{\alpha}}_{\boldsymbol{1}}\Bigr)}^{i \,J^{\boldsymbol{\alpha}}_{\boldsymbol{3}} }\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr]+\Bigl[\mathbb{I}_{\boldsymbol
{\alpha}}\boldsymbol{\otimes} \overbrace{\Bigl(J^{\boldsymbol{\beta}}_{\boldsymbol{1}}J^{\boldsymbol{\beta}}_{\boldsymbol{2}}- J^{\boldsymbol{\beta}}_{\boldsymbol{2}}J^{\boldsymbol{\beta}}_{\boldsymbol{1}}\Bigr)}^{i \,J^{\boldsymbol{\beta}}_{\boldsymbol{3}}}\Bigr]
\nonumber\\
& = \Bigl[\Bigl(i \,J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\Bigr)\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol{\beta}}\Bigr]
+\Bigl[\mathbb{I}_{\boldsymbol{\alpha}}\boldsymbol{\otimes}\Bigl(i\,J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\Bigr)\Bigr]
\nonumber\\
& = i\,\Bigl[\Bigl(J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol{\beta}}\Bigr)
+\Bigl(\mathbb{I}_{\boldsymbol{\alpha}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\Bigr)\Bigr]
\nonumber\\
& = i \, J_{\boldsymbol{3}}
\tag{A-12}
\end{align}
so proving (A-06a). By cyclic permutation (A-06b) and (A-06c) are proved also.
For the treatment of the angular momentum we make use of equation (A-03c), repeated here for convenience:
\begin{equation}
J_{\boldsymbol{3}}=\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\right)
\tag{A-03c}
\end{equation}
This relation has the advantage that if the matrices representing the components $\:J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\:$ and $\:J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\:$ of the component systems are diagonal, then the matrix representing the component $\:J_{\boldsymbol{3}}\:$ of the composite system is diagonal too(1). But for the full treatment of the angular momentum we need the matrix representing the quantity $\:\mathbf{J}^{\boldsymbol{2}}=J^{\boldsymbol{2}}_{\boldsymbol{1}}+J^{\boldsymbol{2}}_{\boldsymbol{2}}+J^{\boldsymbol{2}}_{\boldsymbol{3}}\:$ also. We'll find an expression of $\:\mathbf{J}^{\boldsymbol{2}}\:$ convenient for the determination of its matrix, which isn't from the beginning diagonal as $\:J_{\boldsymbol{3}}\:$ does.
So, inserting in equation (A-09) the pair of values $\:(n,k)=(1,1)\:$, $\:(n,k)=(2,2)\:$ and $\:(n,k)=(3,3)\:$ we have respectively
\begin{align}
J_{\boldsymbol{1}}^{\boldsymbol{2}} =
\Bigl[\bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{1}}\bigr)^{\boldsymbol{2}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr]+\Bigl[\mathbb{I}_{\boldsymbol {\alpha}}\boldsymbol{\otimes}\bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{1}}\bigr)^{\boldsymbol{2}}\Bigr]
+2\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{1}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{1}}\Bigr)
\tag{A-13a}\\
J_{\boldsymbol{2}}^{\boldsymbol{2}} =
\Bigl[\bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{2}}\bigr)^{\boldsymbol{2}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr]+\Bigl[\mathbb{I}_{\boldsymbol {\alpha}}\boldsymbol{\otimes}\bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{2}}\bigr)^{\boldsymbol{2}}\Bigr]
+2\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{2}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{2}}\Bigr)
\tag{A-13b}\\
J_{\boldsymbol{3}}^{\boldsymbol{2}} =
\Bigl[\bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\bigr)^{\boldsymbol{2}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr]+\Bigl[\mathbb{I}_{\boldsymbol {\alpha}}\boldsymbol{\otimes}\bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\bigr)^{\boldsymbol{2}}\Bigr]
+2\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\Bigr)
\tag{A-13c}
\end{align}
Having in mind that
\begin{align}
\bigl(\mathbf{J}^{\boldsymbol{\alpha}}\bigr)^{\boldsymbol{2}} & =\bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{1}}\bigr)^{\boldsymbol{2}} +\bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{2}}\bigr)^{\boldsymbol{2}}+\bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\bigr)^{\boldsymbol{2}} = j_{\alpha}(j_{\alpha}+1)\mathbb{I}_{\alpha}
\tag{A-14}\\
\bigl( \mathbf{J}^{\boldsymbol{\beta}}\bigr)^{\boldsymbol{2}} &=\bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{1}}\bigr)^{\boldsymbol{2}} +\bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{2}}\bigr)^{\boldsymbol{2}}+\bigl( J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\bigr)^{\boldsymbol{2}} = j_{\beta}(j_{\beta}+1) \mathbb{I}_{\beta}
\tag{A-15}\\
\mathbb{I}_{\alpha} \boldsymbol{\otimes}\mathbb{I}_{\beta} & \equiv
\mathbb{I}_{f}=\text{identity in } \mathsf{H}_{f}=\mathsf{H}_{\alpha}\boldsymbol{\otimes}\mathsf{H}_{\beta}
\tag{A-16}
\end{align}
addition of equations (A-13) yields
\begin{equation}
\mathbf{J}^{\boldsymbol{2}} =\bigl[ j_{\alpha}(j_{\alpha}+1)+ j_{\beta}(j_{\beta}+1) \bigr] \mathbb{I}_{f} +2\sum_{q=1}^{q=3}\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{q}}\boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{q}}\Bigr)
\tag{A-17}
\end{equation}
(1) More precisely : from the definition of the product of operators and given that $\:J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\:$ is represented by the $(2j_{\alpha}+1)$-square matrix
\begin{equation}
J^{\alpha}_{3} =
\begin{bmatrix}
j_{\alpha} & 0 & \cdots & 0 \\
0 & j_{\alpha}-1 & \cdots & 0 \\
\vdots & \vdots & m_{\alpha} & \vdots \\
0 & 0 & \cdots & -j_{\alpha}
\end{bmatrix}
\tag{foot-01}
\end{equation}
and $\:J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\:$ is represented by the $(2j_{\beta}+1)$-square matrix
\begin{equation}
J^{\beta}_{3} =
\begin{bmatrix}
j_{\beta} & 0 & \cdots & 0 \\
0 & j_{\beta}-1 & \cdots & 0 \\
\vdots & \vdots & m_{\beta} & \vdots \\
0 & 0 & \cdots & -j_{\beta}
\end{bmatrix}
\tag{foot-02}
\end{equation}
equation (A-03c) gives that $\:J_{\boldsymbol{3}}\:$ is represented by the following $(2j_{\alpha}+1)\cdot (2j_{\beta}+1)$-square diagonal matrix
\begin{equation}
J_{\boldsymbol{3}}=\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\right)=
\nonumber\\
\end{equation}
\begin{equation}
\begin{bmatrix}
\begin{matrix}
j_{\alpha}+ j_{\beta} & 0 & \cdots & 0 \\
0 & j_{\alpha}+ j_{\beta}-1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & j_{\alpha} -j_{\beta}
\end{matrix} & & & \\
& \begin{matrix}
j_{\alpha}-1+ j_{\beta} & 0 & \cdots & 0 \\
0 & j_{\alpha}-1+ j_{\beta}-1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & j_{\alpha}-1-j_{\beta}
\end{matrix} & & \\
& &\ddots & \\
& & & -j_{\alpha}-j_{\beta}
\end{bmatrix}
\end{equation}
\begin{equation}
\tag{foot-03}
\end{equation}
Example : for $\:j_{\alpha}=\tfrac{1}{2}\:$ and $\:j_{\beta}=1\:$
\begin{equation}
J^{\alpha}_{3} =
\begin{bmatrix}
\begin{array}{cc}
+\frac{1}{2}&0\\
&\\
0&-\frac{1}{2}
\end{array}
\end{bmatrix}
\:,\qquad
J^{\beta}_{3} =
\begin{bmatrix}
\begin{array}{ccc}
+1&0&0\\
0&0&0\\
0&0&-1
\end{array}
\end{bmatrix}
\tag{foot-04}
\end{equation}
so
\begin{equation}
\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)=
\begin{bmatrix}
\begin{array}{cc}
+\frac{1}{2}\cdot\mathbb{I}_{\boldsymbol
{\beta}}&0\cdot\mathbb{I}_{\boldsymbol
{\beta}}\\
&\\
0\cdot\mathbb{I}_{\boldsymbol
{\beta}}&-\frac{1}{2}\cdot\mathbb{I}_{\boldsymbol
{\beta}}
\end{array}
\end{bmatrix}
=
\begin{bmatrix}
\begin{array}{cccccc}
+\frac{1}{2}&0&0&0&0&0\\
0&+\frac{1}{2}&0&0&0&0\\
0&0&+\frac{1}{2}&0&0&0\\
0&0&0&-\frac{1}{2}&0&0\\
0&0&0&0&-\frac{1}{2}&0\\
0&0&0&0&0&-\frac{1}{2}
\end{array}
\end{bmatrix}
\tag{foot-05}
\end{equation}
\begin{equation}
\left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\right)=
\begin{bmatrix}
\begin{array}{cc}
1\cdot J^{\boldsymbol{\beta}}_{\boldsymbol{3}}&0\cdot J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\\
&\\
0\cdot J^{\boldsymbol{\beta}}_{\boldsymbol{3}}&1\cdot J^{\boldsymbol{\beta}}_{\boldsymbol{3}}
\end{array}
\end{bmatrix}
=
\begin{bmatrix}
\begin{array}{cccccc}
+1&0&0&0&0&0\\
0&0&0&0&0&0\\
0&0&-1&0&0&0\\
0&0&0&+1&0&0\\
0&0&0&0&0&0\\
0&0&0&0&0&-1
\end{array}
\end{bmatrix}
\tag{foot-06}
\end{equation}
Adding (foot-05), (foot-06) we have
\begin{equation}
J_{\boldsymbol{3}} =\Bigl( J^{\boldsymbol{\alpha}}_{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{I}_{\boldsymbol
{\beta}}\Bigr)+ \left(\mathbb{I}_{\boldsymbol
{\alpha}} \boldsymbol{\otimes}J^{\boldsymbol{\beta}}_{\boldsymbol{3}}\right)=
\begin{bmatrix}
\begin{array}{cccccc}
+\frac{3}{2}&0&0&0&0&0\\
0&+\frac{1}{2}&0&0&0&0\\
0&0&-\frac{1}{2}&0&0&0\\
0&0&0&+\frac{1}{2}&0&0\\
0&0&0&0&-\frac{1}{2}&0\\
0&0&0&0&0&-\frac{3}{2}
\end{array}
\end{bmatrix}
\tag{foot-07}
\end{equation}
which after rearrangement of rows and columns becomes
\begin{equation}
\widehat{J}_{\boldsymbol{3}} =
\begin{bmatrix}
\begin{array}{cccccc}
+\frac{3}{2}&0&0&0&0&0\\
0&+\frac{1}{2}&0&0&0&0\\
0&0&-\frac{1}{2}&0&0&0\\
0&0&0&-\frac{3}{2}&0&0\\
0&0&0&0&+\frac{1}{2}&0\\
0&0&0&0&0&-\frac{1}{2}
\end{array}
\end{bmatrix}
\tag{foot-08}
\end{equation}
recognized later on as the direct sum of $\:j_{1}=\tfrac{1}{2}\:$ and $\:j_{2}=\tfrac{3}{2}\:$
\begin{equation}
\boldsymbol{2}\boldsymbol{\otimes}\boldsymbol{3}=\boldsymbol{2}\boldsymbol{\oplus}\boldsymbol{4}
\tag{foot-09}
\end{equation}
a special case of the more general expression of the product space as the direct sum of mutually orthogonal and invariant under SU(2) subspaces
\begin{equation}
(2j_{\alpha}+1)\boldsymbol{\otimes}(2j_{\beta}+1)=\bigoplus_{j=\vert j_{\beta}-j_{\alpha} \vert }^{j=\left(j_{\alpha}+j_{\beta}\right)}(2j+1)
\tag{foot-10}
\end{equation}
For a more detailed treatment see my answers here : Total spin of two spin-1/2 particles.