In scalar quantum field theory the field momentum operator is constructed from the canonical field operators, $\phi$ and $\pi$, in the equation: $$P_j = -\int \pi \partial_j \phi \operatorname{d}^3x.$$
As long as the field operators obey the equal time commutation relations, $\left[ \phi\left(\vec{x}\right),\pi\left(\vec{y}\right)\right] = i \delta\left(\vec{x}-\vec{y}\right)$, it is possible to show that the following operator: $$X_j = \int \pi x_j \phi \operatorname{d}^3x ,$$ obeys the commutation relation $[X_j,P_k] = i\delta_{jk}$.
In detail: $$\begin{align} X_j P_k & = -\int \pi(y) y_j \phi(y) \operatorname{d}^3y \int \pi(x) \frac{\partial}{\partial x_k} \phi(x) \operatorname{d}^3x \\ & = -\int \operatorname{d}^3 x \operatorname{d}^3 y \left(\pi(y) y_j \left[i \delta\left(\vec{x}-\vec{y}\right) +\pi(x) \phi(y)\right] \frac{\partial}{\partial x_k} \phi(x)\right) \\ & = -i \int \operatorname{d}^3 x\, \pi(x) x_j \frac{\partial}{\partial x_k} \phi(x) \\ &\hphantom{=} - \int \operatorname{d}^3 x \operatorname{d}^3 y\, \left(\pi(x) \frac{\partial}{\partial x_k}\left[-i\delta\left(\vec{x}-\vec{y}\right) + \phi(x) \pi(y) \right] y_j \phi(y)\right)\\ & = -i \int \operatorname{d}^3 x\, \pi(x) x_j \frac{\partial}{\partial x_k} \phi(x) + i \int \operatorname{d}^3 x \operatorname{d}^3 y\, \pi(x) \frac{\partial}{\partial x_k} \delta\left(\vec{x}-\vec{y}\right) y_j \phi\left(\vec{y}\right) + P_k X_j\\ & = -i \int \operatorname{d}^3 x\, \pi(x) x_j \frac{\partial}{\partial x_k} \phi(x) - i \int \operatorname{d}^3 x \operatorname{d}^3 y\, \pi(x) \frac{\partial}{\partial y_k} \delta\left(\vec{x}-\vec{y}\right) y_j \phi\left(\vec{y}\right) + P_k X_j\\ & = -i \int \operatorname{d}^3 x\, \pi(x) x_j \frac{\partial}{\partial x_k} \phi(x) + i \int \operatorname{d}^3 x \operatorname{d}^3 y\, \pi(x) \delta\left(\vec{x}-\vec{y}\right) \frac{\partial}{\partial y_k} \left[ y_j \phi\left(\vec{y}\right)\right] + P_k X_j\\ & = i \delta_{jk} + P_k X_j . \end{align}$$
What is the physical interpreation of $X_j$?