I have a question regarding the 2 Fermions in Two-level system and the possible states and resulting partition function.
As far as I know, Fermions are forbidden from occupying same quantum states by Pauli exclusion principle. Thus the possible states should look like,
$$
\underline{\hspace{1cm}} \quad \underline{\uparrow \hspace{0.5cm}} \quad \underline{\downarrow \hspace{0.5cm}} \quad \underline{\uparrow \hspace{0.5cm}} \quad \underline{\downarrow \hspace{0.5cm}} \quad \underline{\uparrow\downarrow\hspace{0.6cm}}\\
\underline{\uparrow \downarrow \hspace{0.6cm}} \quad \underline{\downarrow \hspace{0.5cm}} \quad \underline{\downarrow \hspace{0.5cm}} \quad \underline{\uparrow \hspace{0.5cm}} \quad \underline{\uparrow \hspace{0.5cm}} \quad \underline{\hspace{1cm}}
$$
But from the solutions, I saw it should look like below. $$ \underline{\hspace{1cm}} \quad \underline{\uparrow \hspace{0.5cm}} \quad \underline{\downarrow \hspace{0.5cm}} \quad \underline{\uparrow\downarrow\hspace{0.6cm}}\\ \underline{\uparrow \downarrow \hspace{0.6cm}} \quad \underline{\downarrow \hspace{0.5cm}} \quad \underline{\uparrow \hspace{0.5cm}} \quad \underline{\hspace{1cm}} $$
Shouldn't all the spin configuration be possible for the fermions?