In Negele's book "quantum many-particle systems", the completeness formula for coherent state is $$\int {\frac{{d{\phi ^*}d\phi }}{{2\pi i}}{e^{ - {\phi ^*}\phi }}} \left| \phi \right\rangle \left\langle \phi \right| = I\tag{1}$$ and it says the integration measure is $$\frac{{d{\phi ^*}d\phi }}{{2\pi i}} = \frac{{d\left( {{\mathop{\rm Re}\nolimits} \phi } \right)d\left( {{\mathop{\rm Im}\nolimits} \phi } \right)}}{\pi }.\tag{2}$$ How to understand this integration measure equality?
As I understand, If I view $\phi=x+iy$, then $${d\left( {{\mathop{\rm Re}\nolimits} \phi } \right)d\left( {{\mathop{\rm Im}\nolimits} \phi } \right)}=dxdy.\tag{3}$$ But
$$d{\phi ^*}d\phi = \left( {dx - idy} \right)\left( {dx + idy} \right) = d{x^2} + d{y^2}\tag{4}$$
I am pretty sure this understanding is wrong. What is the right way?