In the course of learning electrodynamics, I was asked to solve the problem following:
$\vec A$ is a vector which satisfies $\vec A\cdot \vec{\textbf{n}}=0$, where $\vec{\textbf{n}}$ is the normal vector of the surface of the volume $V$. Besides, $\nabla\cdot\vec A=0$ within the volume $V$. Please prove $$\int_V\text{d}V\ \vec A=0.$$
A standard solution is $$\int_V\text{d}V \vec A=\int_V\text{d}V\,\nabla\cdot(\vec A\vec r )=\oint_S\text{d}\vec\sigma\cdot(\vec A\vec r )=\oint_S\text{d}\sigma\,\vec{\textbf{n}}\cdot(\vec A\vec r)=\oint_S\text{d}\sigma\ (0\times\vec r)=0.$$
However, does this solution mean that a person that has never learned tensor analysis can never solve the problem? I wonder whether there are any other solutions without using tensors.
Thank you for your reading the question. Waiting for your excellent answers.