In order to assert that an event pair consisting of
$\varepsilon_{A B}, \varepsilon_{J K} \in \mathcal S$, for which
$$\ell[ \, \varepsilon_{A B}, \varepsilon_{J K} \, ] = \ell[ \, \varepsilon_{J K}, \varepsilon_{A B} \, ] = 0$$
is known to begin with, is specifically spacelike separated, and not lightlike,
the existence of a suitable "$\ell = 0$"-boundary is required, and must be established, which separates
the set of all timelike ("$\ell \gt 0$") event pairs to which either event $\varepsilon_{A B}$ or $\varepsilon_{J K}$ belong
from the "$\ell = 0$"-set of event pairs including the pair $(\varepsilon_{A B}, \varepsilon_{J K})$.
This is accomplished by requiring explicitly that:
$\forall \varepsilon_{A Q} \in \mathcal S {\Large \, | \, } \ell[ \, \varepsilon_{A B}, \varepsilon_{A Q} \, ] + \ell[ \, \varepsilon_{A Q}, \varepsilon_{A B} \, ] \gt 0 :$
$ \qquad \exists \, \varepsilon_{A P} \in \mathcal S {\Large \, | \, } \ell[ \, \varepsilon_{A B}, \varepsilon_{A P} \, ] + \ell[ \, \varepsilon_{A P}, \varepsilon_{A B} \, ] \gt 0 \text{ and } \ell[ \, \varepsilon_{A P}, \varepsilon_{A Q} \, ] + \ell[ \, \varepsilon_{A Q}, \varepsilon_{A P} \, ] \gt 0 \text{ and } $
$ \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{A B}, \varepsilon_{A P} \, ] + \ell[ \, \varepsilon_{A P}, \varepsilon_{A B} \, ] + \ell[ \, \varepsilon_{A P}, \varepsilon_{A Q} \, ] + \ell[ \, \varepsilon_{A Q}, \varepsilon_{A P} \, ] \le $
$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{A B}, \varepsilon_{A Q} \, ] + \ell[ \, \varepsilon_{A Q}, \varepsilon_{A B} \, ]
$
$ \qquad \qquad \qquad \qquad \text{ and } \, \ell[ \, \varepsilon_{A P}, \varepsilon_{J K} \, ] = \ell[ \, \varepsilon_{J K}, \varepsilon_{A P} \, ] = 0 \, \text{ and } $
$ \qquad \forall \varepsilon_{A O} \in \mathcal S {\Large \, | \, } \ell[ \, \varepsilon_{A B}, \varepsilon_{A O} \, ] + \ell[ \, \varepsilon_{A O}, \varepsilon_{A B} \, ] \gt 0 \text{ and } \ell[ \, \varepsilon_{A O}, \varepsilon_{A P} \, ] + \ell[ \, \varepsilon_{A P}, \varepsilon_{A O} \, ] \gt 0 \text{ and } $
$ \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{A B}, \varepsilon_{A O} \, ] + \ell[ \, \varepsilon_{A O}, \varepsilon_{A B} \, ] + \ell[ \, \varepsilon_{A O}, \varepsilon_{A P} \, ] + \ell[ \, \varepsilon_{A P}, \varepsilon_{A O} \, ] \le $
$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{A B}, \varepsilon_{A P} \, ] + \ell[ \, \varepsilon_{A P}, \varepsilon_{A B} \, ] : $
$ \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{A O}, \varepsilon_{J K} \, ] = \ell[ \, \varepsilon_{J K}, \varepsilon_{A O} \, ] = 0,$
and correspondingly (interchanging the roles of $\varepsilon_{A B}$ and $\varepsilon_{J K}$):
$\forall \varepsilon_{J F} \in \mathcal S {\Large \, | \, } \ell[ \, \varepsilon_{J K}, \varepsilon_{J F} \, ] + \ell[ \, \varepsilon_{J F}, \varepsilon_{J K} \, ] \gt 0 :$
$ \qquad \exists \, \varepsilon_{J G} \in \mathcal S {\Large \, | \, } \ell[ \, \varepsilon_{J K}, \varepsilon_{J G} \, ] + \ell[ \, \varepsilon_{J G}, \varepsilon_{J K} \, ] \gt 0 \text{ and } \ell[ \, \varepsilon_{J G}, \varepsilon_{J F} \, ] + \ell[ \, \varepsilon_{J F}, \varepsilon_{J G} \, ] \gt 0 \text{ and } $
$ \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{J K}, \varepsilon_{J G} \, ] + \ell[ \, \varepsilon_{J G}, \varepsilon_{J K} \, ] + \ell[ \, \varepsilon_{J G}, \varepsilon_{J F} \, ] + \ell[ \, \varepsilon_{J F}, \varepsilon_{J G} \, ] \le $
$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{J K}, \varepsilon_{J F} \, ] + \ell[ \, \varepsilon_{J F}, \varepsilon_{J K} \, ]
$
$ \qquad \qquad \qquad \qquad \text{ and } \, \ell[ \, \varepsilon_{A B}, \varepsilon_{J G} \, ] = \ell[ \, \varepsilon_{J G}, \varepsilon_{A P} \, ] = 0 \, \text{ and } $
$ \qquad \forall \varepsilon_{J H} \in \mathcal S {\Large \, | \, } \ell[ \, \varepsilon_{J K}, \varepsilon_{J H} \, ] + \ell[ \, \varepsilon_{J H}, \varepsilon_{J K} \, ] \gt 0 \text{ and } \ell[ \, \varepsilon_{J H}, \varepsilon_{J G} \, ] + \ell[ \, \varepsilon_{J G}, \varepsilon_{J H} \, ] \gt 0 \text{ and } $
$ \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{J K}, \varepsilon_{J H} \, ] + \ell[ \, \varepsilon_{J H}, \varepsilon_{J K} \, ] + \ell[ \, \varepsilon_{J H}, \varepsilon_{J G} \, ] + \ell[ \, \varepsilon_{J G}, \varepsilon_{J H} \, ] \le $
$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{J K}, \varepsilon_{J G} \, ] + \ell[ \, \varepsilon_{J G}, \varepsilon_{J K} \, ] : $
$ \qquad \qquad \qquad \qquad \ell[ \, \varepsilon_{A B}, \varepsilon_{J H} \, ] = \ell[ \, \varepsilon_{J H}, \varepsilon_{A B} \, ] = 0.$