0

When considering whether or not the total energy of a system varies over time, we consider the time dependence of the Lagrangian, namely by looking at $$\frac{\partial L}{\partial t} \, .$$

Why is it that we only consider explicit time dependence in this case, and not the dependence of each variable within the Lagrangian? My notes on this topic are fairly vague and I just wondered if there was a simple reason.

Qmechanic
  • 201,751
  • shouldn't that read $\frac{\partial L}{\partial t}$? – Christoph Apr 09 '17 at 16:31
  • It should... which actually answers my question... It's a mistype in my notes.

    That being said, I'd quite like to know the physical reason behind this!

    – arcturus7 Apr 09 '17 at 16:31
  • Possible duplicates: http://physics.stackexchange.com/q/94381/2451 , http://physics.stackexchange.com/q/224790/2451 , http://physics.stackexchange.com/q/251900/2451 and links therein. – Qmechanic Apr 09 '17 at 16:39

2 Answers2

1

Short answer: it can be shown that the Hamiltonian satisfies $$\frac{dH}{dt}=\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}.$$Long answer: since $H=\dot{\mathbf{q}}\cdot\mathbf{p}-L$ we have $\partial_t H=-\partial_t L$, and by Hamilton's equations $$\frac{dH}{dt}-\frac{\partial H}{\partial t}=\frac{dH}{d\mathbf{q}}\cdot\dot{\mathbf{q}}+\frac{dH}{d\mathbf{p}}\cdot\dot{\mathbf{p}}=\frac{dH}{d\mathbf{q}}\cdot\frac{dH}{d\mathbf{p}}-\frac{dH}{d\mathbf{p}}\cdot\frac{dH}{d\mathbf{q}}=0.$$

J.G.
  • 24,837
0

\begin{align} \frac{\mathrm dE}{\mathrm dt} &\equiv \frac{\mathrm d}{\mathrm dt} \left(\frac{\partial L}{\partial \dot q}\dot q - L\right) \\&= \left(\frac{\mathrm d}{\mathrm dt} \frac{\partial L}{\partial \dot q} \right) \dot q + \frac{\partial L}{\partial \dot q} \ddot q - \frac{\partial L}{\partial q} \dot q - \frac{\partial L}{\partial \dot q} \ddot q - \frac{\partial L}{\partial t} \\&= \left( \frac{\mathrm d}{\mathrm dt} \frac{\partial L}{\partial \dot q} - \frac{\partial L}{\partial q} \right) \dot q - \frac{\partial L}{\partial t} \\&\overset{\text{eom}}= - \frac{\partial L}{\partial t} \end{align}

Christoph
  • 13,545