m_2 ^ ^ M=m_1+m_2
| /
\ | /
k_2 -----------------------------------------
| \ | / |
| \|/ |
-----------------------------------------------------> m_1
| /|\ |
| / | \ |
-k_2 -----------------------------------------
-k_1 / | \ k_1
/ | v M=m_1-m_2
$\uparrow$ Fig. 1. A rectangle of eigenvalues $(m_1,m_2)$.
I) Let $k_1$ and $k_2$ be non-negative half-integers or integers. The book is basically counting an integral lattice
$$ (\mathbb{Z}+k_1) \times (\mathbb{Z}+k_2) $$
of $(2k_1+1) \times (2k_2+1)$ points sitting inside a $2k_1 \times 2k_2$ rectangle by using "light-cone" coordinates
$$M ~=~ m_1+m_2, $$
$$\Delta ~=~ m_1-m_2, $$
which are tilded $45^{\circ}$. (Sorry, the ASCII diagram (Fig. 1) doesn't reproduce the angle $45^{\circ}$ well. Assume $\hbar=1$.)
A multiplicity formula for the lattice points inside the rectangle is
$$\tag{1} {\rm mult}(M) ~=~ 1 + k_1 + k_2 - \max(|M|,|k_1 - k_2|) $$
as a function of the variable
$$M\in(\mathbb{Z}+k_1+k_2) \cap [ -k_1-k_2,k_1+k_2]. $$
The function (1) has a trapezoidal graph:
^ mult(M)
|
/---------|---------\ 1 + k_1 + k_2 - |k_1 - k_2|
/| | |\
/ | | | \
/ | | | \
--|---|---------|---------|---|--------> M
-k_1-k_2 | | | k_1+k_2
| | |
-|k_1-k_2 | |k_1-k_2 |
$\uparrow$ Fig. 2. Multiplicity ${\rm mult}(M)$ as a function of $M$.
II) Group-theoretically, it is important to know the Clebsch-Gordan fusion rule
$$\tag{2} \underline{2k_1+1} \otimes \underline{2k_2+1}
~=~ \oplus_{K=|k_1-k_2|}^{k_1+k_2} \underline{2K+1}$$
in terms of irreps. Here $\underline{1}$, $\underline{2}$, $\underline{3}$, $\ldots$, refer to the singlet irrep, doublet irrep, triplet irrep, $\ldots$, respectively. It is a nice exercise to check that the dimensions on the right- and left- hand sides of (2) match. See also this Phys.SE question.