Prove that the Lagrangian Density $\mathscr{L}$, which generates a given set of Euler-Lagrange equations, is not unique.
Hint 1: Adding a divergence to $\mathscr{L}$ does not alter the Euler-Lagrange equation.
Attempt: Let $\mathscr{L´}=\mathscr{L}+\sum_{k}\frac{\partial f_k}{\partial x_k}$
Where $$\mathscr{L}=\mathscr{L}\big(x_k, \varphi_j, \frac{\partial \varphi_k}{\partial x_k}\big)$$ $$f_k=f_k(\varphi_j)$$ $j=1,...,m$ indexes the dependent field variables.
$k=1,...,n$ indexes the independent variables.
Hint 2: Then prove that: $$\frac{\delta \mathscr{L´}}{\delta \varphi_j}=\frac{\delta \mathscr{L}}{\delta \varphi_j}$$
Attempt: Now we define $$\frac{\delta \mathscr{L}}{\delta \varphi_j}=\frac{\partial \mathscr{L}}{\partial \varphi_j}-\sum_{l} \frac{\partial}{\partial x_l} \frac{\partial \mathscr{L}}{\partial (\partial \varphi_j/\partial x_l)}$$
But i can´t keep following the hints to get the proof done: