For pure states $|\psi\rangle$, entanglement is straightforward. Given two Hilbert spaces $\mathcal{H}_A$ and $\mathcal{H}_B$, a pure state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ is a product state iff it can written as $|\psi\rangle = |a\rangle \otimes |b\rangle$ for some $|a\rangle \in \mathcal{H}_A$ and $|b\rangle \in \mathcal{H}_B$. Otherwise, $|\psi\rangle$ is entangled. Easy-peasy.
For mixed states $\rho$ (i.e. trace-$1$ positive semidefinite Hermitian operators), things are much more complicated, because there's a weird intermediate case:
- A "product state" (or "simply separable state") can be written as $\rho = \rho_A \otimes \rho_B$, where $\rho_A$ and $\rho_B$ are states acting on $\mathcal{H}_A$ and $\mathcal{H}_B$ respectively.
- A "separable state" can be written as $\rho = \sum \limits_k^N p_k \rho_A^{(k)} \otimes \rho_B^{(k)}$, where the $\rho^{(k)}$ are all states and the $p_k$ form a discrete probability distribution (i.e. they are all nonnegative and sum to $1$). (Note that $N$ can be arbitrarily large - e.g. larger than the product of the dimensions of $\mathcal{H}_A$ and of $\mathcal{H}_B$. We can always Schmidt decompose the $\rho^{(k)}$ and redefine the index $k$ (potentially increasing $N$) to make the new $\rho^{(k)}$'s pure.)
- An "entangled state" is a state that is not separable; it can be written in the form above, but the $p_k$'s and the spectra of the $\rho^{(k)}$ cannot all be probability distributions.
Why are non-product separable states considered to be unentangled? I understand why we can intuitively think of a separable state $\rho$ as a classical mixture of product states, but to me, the overwhelmingly natural definition of an "entangled state" would be "not a product state." The requirement that the coefficients $p_k \geq 0$ seems very strange to me, since inequalities rarely come up in the foundations of quantum mechanics.
More concretely, the fact that non-product separable states can have positive quantum dischord is often cited as evidence that there can exist purely quantum correlations that are impossible in a classical system but do not rely on entanglement. But to me, that's merely evidence that you've chosen a poor definition of the word "entanglement." Moreover, checking whether a state is entangled under the definition above is NP-hard. while I believe that checking whether it's a product state is known to be efficient. If the standard definition of "entanglement" is incredibly difficult to check for a particular system and doesn't even capture all the quantum correlations anyway, then what is it good for?