You are correct.
In the world coordinates you have $$\frac{{\rm d}}{{\rm d}t} X_G = \frac{\partial}{\partial t} X_G + \omega_G \times X_G$$
So you differentiate $\omega_G = T_{GB}\, \omega_B$ to get the rotational acceleration transformation
$$\alpha_G = \frac{\rm d}{{\rm d}t} \left( T_{GB}\, \omega_B \right) = \frac{\rm d}{{\rm d}t} \left( T_{GB} \right) \omega_B+T_{GB}\, \frac{\rm d}{{\rm d}t} \left( \omega_B \right) =\omega_G \times T_{GB}\,\omega_B + T_{GB}\,\alpha_B$$
$$\require{cancel}
\boxed{ \alpha_G = \cancel{ \omega_G \times \omega_G} + T_{GB}\,\alpha_B }
$$
Angular acceleration transforms the same way as rotational velocity when it comes to orientation changes.
This technique is used to find the kinematics of a pin joint for example. Consider a pin axis ${\bf z}_1$ and angle $\theta$ relating two (rotating) coincident coordinate frames. The axis is in the local coordinate frame of the first body, such that in world coordinate ${\bf z} = T_1 {\bf z}_1$
$$T_2 = T_1 \, {\rm Rot}({\bf z}_1,\theta)$$
The 1st time derivative of the above is
$$\frac{\rm d}{{\rm d}t} T_2 =\frac{\rm d}{{\rm d}t} \left( T_1 \, {\rm Rot}({\bf z}_1,\theta) \right) = \frac{\rm d}{{\rm d}t} \left( T_1 \right) \, {\rm Rot}({\bf z}_1,\theta)+T_1 \,\frac{\rm d}{{\rm d}t} \left( {\rm Rot}({\bf z},\theta) \right)$$
$$ {\boldsymbol \omega}_2 \times T_2 = {\boldsymbol \omega}_1 \times T_1 {\rm Rot}({\bf z}_1,\theta) + T_1 \left( ({\bf z}_1\dot{\theta}) \times {\rm Rot}({\bf z},\theta) \right) $$
Use the identity $T({\bf a}\times{\bf b}) = (T {\bf a}) \times (T {\bf b})$
$$ {\boldsymbol \omega}_2 \times T_2 = {\boldsymbol \omega}_1 \times T_2 + (T_1 {\bf z}_1\dot{\theta}) \times (T_1 {\rm Rot}({\bf z}_1,\theta) )$$
$$ {\boldsymbol \omega}_2 \times T_2 = {\boldsymbol \omega}_1 \times T_2 + \left((T_1 {\bf z}_1)\dot{\theta}\right) \times T_2$$
$${\boldsymbol \omega}_2 = {\boldsymbol \omega}_1 + T_1 {\bf z}_1\dot{\theta} $$
$$\boxed{{\boldsymbol \omega}_2 = {\boldsymbol \omega}_1 + {\bf z} \dot{\theta}} $$
Now take the time derivative of the above
$$ \frac{\rm d}{{\rm d}t}{\boldsymbol \omega}_2 = \frac{\rm d}{{\rm d}t}{\boldsymbol \omega}_1 + \frac{\rm d}{{\rm d}t}({\bf z} \dot{\theta}) $$
$$\boxed{ {\boldsymbol \alpha}_2 = {\boldsymbol \alpha}_1 + {\boldsymbol \omega}_1 \times {\bf z} \dot{\theta} + {\bf z} \ddot{\theta} }$$