2

I don't understand the jump from the 3rd to the 4th line of the proof of this statement. Can someone please explain why $|a_m\rangle^{(1)}\langle a_m|^{(1)} \otimes|b_n\rangle^{(2)}\langle b_n|^{(2)}=(|a_m\rangle^{(1)}\otimes |b_n\rangle^{(2)})(\langle a_m|^{(1)}\otimes\langle b_n|^{(2)}) $ ? I know that bras are basically operators and that $\langle a_m|^{(1)}\otimes\langle b_n|^{(2)}$ can therefore be viewed as a tensor product of operators $T\otimes S$ $(T=\langle a_m|^{(1)},S=\langle b_n|^{(2)})$ and that when acting on a tensor product of states $T\otimes S(v\otimes w)=Tv\otimes Sw$. But here the tensor state $(|a_m\rangle^{(1)}\otimes |b_n\rangle^{(2)})$ is left of the tensor operator $(\langle a_m|^{(1)}\otimes\langle b_n|^{(2)})$ ?!? I am so confused with this... enter image description here

The proof is from: http://web.pa.msu.edu/people/mmoore/Lect24_TensorProduct.pdf, pdf page 8

Luka8281
  • 799
  • The state $:|c_k\rangle = |a_m\rangle^{(1)}\otimes |b_n\rangle^{(2)}:$ is a product state in the product space $:\mathcal{H}{12}:$ and $: \langle c_k| = \langle a_m|^{(1)}\otimes\langle b_n|^{(2)} :$. Then $: |c_k\rangle\langle c_k| = (|a_m\rangle^{(1)}\otimes |b_n\rangle^{(2)})(\langle a_m|^{(1)}\otimes\langle b_n|^{(2)}):$ is the known operator - projection of a state in $:\mathcal{H}{12}:$ on the product state $:|c_k\rangle :$ for which the symbol $: |a_m,b_n\rangle^{(12)}:$ is used later in the proof. – Frobenius Oct 09 '17 at 22:55
  • Yes, but why $|a_m\rangle^{(1)}\langle a_m|^{(1)} \otimes|b_n\rangle^{(2)}\langle b_n|^{(2)}=(|a_m\rangle^{(1)}\otimes |b_n\rangle^{(2)})(\langle a_m|^{(1)}\otimes\langle b_n|^{(2)}) $ ? This is what I don't understand... – Luka8281 Oct 10 '17 at 06:13

1 Answers1

3

For $\:\boldsymbol{\xi}\in \mathcal{H}_{1}\,,\boldsymbol{\eta}\in \mathcal{H}_{2} \:$ and $\:\mathrm{I_{1}}\equiv\text{identity in }\mathcal{H}_{1}\,,\mathrm{I_{2}}\equiv\text{identity in }\mathcal{H}_{2} \:$

\begin{align} &\left(|a\rangle\langle a|\otimes|b\rangle\langle b|\right)\left(|\boldsymbol{\xi}\rangle\otimes|\boldsymbol{\eta}\rangle\right) =\left(|a\rangle\langle a|\boldsymbol{\xi}\rangle\right)\otimes\left(|b\rangle\langle b|\boldsymbol{\eta}\rangle\right)= \nonumber\\ & \left(\langle a|\boldsymbol{\xi}\rangle \mathrm{I_{1}}|a\rangle\right)\otimes\left(\langle b|\boldsymbol{\eta}\rangle\mathrm{I_{2}}|b\rangle\right)= \left[\left(\langle a|\boldsymbol{\xi}\rangle \mathrm{I_{1}}\right)\otimes\left(\langle b|\boldsymbol{\eta}\rangle\mathrm{I_{2}}\right)\right]\left(|a\rangle\otimes|b\rangle\right)= \tag{01}\\ & \underbrace{\left[\left(\langle a|\mathrm{I_{1}}\right)\otimes\left(\langle b|\mathrm{I_{2}}\right)\right]\left(|\boldsymbol{\xi}\rangle\otimes|\boldsymbol{\eta}\rangle\right)}_{\textrm{scalar quantity}}\left(|a\rangle\otimes|b\rangle\right)=\left(|a\rangle\otimes|b\rangle\right)\underbrace{\left(\langle a|\otimes\langle b|\right)\left(|\boldsymbol{\xi}\rangle\otimes|\boldsymbol{\eta}\rangle\right)}_{\textrm{scalar quantity}} \nonumber \end{align} so \begin{equation} \left(|a\rangle\langle a|\otimes|b\rangle\langle b|\right)= \left(|a\rangle\otimes|b\rangle\right)\left(\langle a|\otimes\langle b|\right) \tag{02} \end{equation} Note that a scalar multiple of a vector $\:\mathbf{x}\:$ in a linear space, for example $\:\mathbf{y}=z\cdot\mathbf{x}\:$ where $\:\mathbf{x},\mathbf{y} \in \mathbb{C}^{n} \:$ and $\:z \in \mathbb{C}\:$, could be expressed as \begin{equation} \mathbf{y}=\left(z\,\mathrm{I}_{n}\right)\mathbf{x} \tag{03} \end{equation} where $\:\mathrm{I}_{n}\:$ the identity in the linear space, here in $\:\mathbb{C}^{n}$.

Now, the rhs in the 1rst line of (01), that is the term \begin{equation} \left(|a\rangle\langle a|\boldsymbol{\xi}\rangle\right)\otimes\left(|b\rangle\langle b|\boldsymbol{\eta}\rangle\right) \tag{04} \end{equation} is essentially a scalar multiple of $\:\left(|a\rangle\otimes|b\rangle\right)\:$ \begin{equation} \left(|a\rangle\langle a|\boldsymbol{\xi}\rangle\right)\otimes\left(|b\rangle\langle b|\boldsymbol{\eta}\rangle\right)=\underbrace{\langle a|\boldsymbol{\xi}\rangle \langle b|\boldsymbol{\eta}\rangle}_{\textrm{scalar quantity}}\left(|a\rangle\otimes|b\rangle\right) \tag{05} \end{equation} and according to (03) could be expressed as \begin{equation} \left(|a\rangle\langle a|\boldsymbol{\xi}\rangle\right)\otimes\left(|b\rangle\langle b|\boldsymbol{\eta}\rangle\right)=\underbrace{\langle a|\boldsymbol{\xi}\rangle \langle b|\boldsymbol{\eta}\rangle}_{\textrm{scalar quantity}}\,\mathrm{I}_{12} \left(|a\rangle\otimes|b\rangle\right) \tag{06} \end{equation} where $\:\mathrm{I}_{12}\:$ the identity in the product space $\:\mathcal{H}_{12}$. But \begin{equation} \mathrm{I}_{12}=\mathrm{I}_{1}\otimes\mathrm{I}_{2} \tag{07} \end{equation} This explains the rhs of the 2nd line of (01).(1)


Example

Let $\:\mathcal{H}_{1}\equiv \mathbb{R}^{3} \:$,$\:\mathcal{H}_{2}\equiv \mathbb{R}^{2}$. The terms in the identity (02), repeated here for convenience, \begin{equation} \bigl(|\mathbf{a}\rangle\langle \mathbf{a}|\bigr)\boldsymbol{\otimes}\bigl(|\mathbf{b}\rangle\langle \mathbf{b}|\bigr)= \bigl(|\mathbf{a}\rangle\boldsymbol{\otimes}|\mathbf{b}\rangle\bigr)\bigl(\langle \mathbf{a}|\boldsymbol{\otimes}\langle \mathbf{b}|\bigr) \tag{Ex-01} \end{equation} will be expressed explicitly by their components and we'll see a verification of this identity.

So \begin{align} &|\mathbf{a}\rangle= \begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} \in \mathbb{R}^{3}\equiv \mathcal{H}_{1} \, ,\quad |\mathbf{b}\rangle= \begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix} \in \mathbb{R}^{2}\equiv \mathcal{H}_{2} \quad \Longrightarrow \nonumber\\ &|\mathbf{a}\rangle\boldsymbol{\otimes}|\mathbf{b}\rangle= \begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} \boldsymbol{\otimes} \begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix} = \begin{bmatrix} a_{1}\begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix}\\ \\ a_{2}\begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix}\\ \\ a_{3}\begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a_{1}b_{1}\\ a_{1}b_{2}\\ a_{2}b_{1}\\ a_{2}b_{2}\\ a_{3}b_{1}\\ a_{3}b_{2} \end{bmatrix} \in \underbrace{\mathbb{R}^{3}\boldsymbol{\otimes}\mathbb{R}^{2}=\mathbb{R}^{6}}_{\:\:\:\mathcal{H}_{1}\:\:\boldsymbol{\otimes}\:\:\mathcal{H}_{2}\:\:\:=\:\:\:\mathcal{H}_{12}} \tag{Ex-02} \end{align} and \begin{align} &\langle\mathbf{a}|= \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix} \,,\quad \langle\mathbf{b}|= \begin{bmatrix} b_{1} & b_{2} \end{bmatrix} \quad \Longrightarrow \langle\mathbf{a}|\boldsymbol{\otimes}\langle\mathbf{b}|= \begin{bmatrix} a_{1}\begin{bmatrix} b_{1} & b_{2} \end{bmatrix} & a_{2}\begin{bmatrix} b_{1} & b_{2} \end{bmatrix} & a_{3}\begin{bmatrix} b_{1} & b_{2} \end{bmatrix} \end{bmatrix} \nonumber\\ &\Longrightarrow\langle\mathbf{a}|\boldsymbol{\otimes}\langle\mathbf{b}|= \begin{bmatrix} a_{1}b_{1}&a_{1}b_{2}&a_{2}b_{1}&a_{2}b_{2}&a_{3}b_{1}&a_{3}b_{2} \end{bmatrix} \tag{Ex-03} \end{align} Then the transformation in the rhs of (Ex-01) is represented by \begin{equation} \bigl(|\mathbf{a}\rangle\boldsymbol{\otimes}|\mathbf{b}\rangle \bigr)\bigl( \langle\mathbf{a}|\boldsymbol{\otimes}\langle\mathbf{b}|\bigr) = \begin{bmatrix} a_{1}b_{1}\\ a_{1}b_{2}\\ a_{2}b_{1}\\ a_{2}b_{2}\\ a_{3}b_{1}\\ a_{3}b_{2} \end{bmatrix} \begin{bmatrix} a_{1}b_{1}&a_{1}b_{2}&a_{2}b_{1}&a_{2}b_{2}&a_{3}b_{1}&a_{3}b_{2} \end{bmatrix} \tag{Ex-04} \end{equation} that is by the $\:6 \times 6\:$ matrix \begin{equation} \bigl(|\mathbf{a}\rangle\boldsymbol{\otimes}|\mathbf{b}\rangle \bigr)\bigl( \langle\mathbf{a}|\boldsymbol{\otimes}\langle\mathbf{b}|\bigr) = \begin{bmatrix} a_{1}b_{1}a_{1}b_{1} & a_{1}b_{1}a_{1}b_{2} & a_{1}b_{1}a_{2}b_{1} & a_{1}b_{1}a_{2}b_{2} & a_{1}b_{1}a_{3}b_{1}& a_{1}b_{1}a_{3}b_{2}\\ a_{1}b_{2}a_{1}b_{1} & a_{1}b_{2}a_{1}b_{2} & a_{1}b_{2}a_{2}b_{1} & a_{1}b_{2}a_{2}b_{2} & a_{1}b_{2}a_{3}b_{1}& a_{1}b_{2}a_{3}b_{2}\\ a_{2}b_{1}a_{1}b_{1} & a_{2}b_{1}a_{1}b_{2} & a_{2}b_{1}a_{2}b_{1} & a_{2}b_{1}a_{2}b_{2} & a_{2}b_{1}a_{3}b_{1}& a_{2}b_{1}a_{3}b_{2}\\ a_{2}b_{2}a_{1}b_{1} & a_{2}b_{2}a_{1}b_{2} & a_{2}b_{2}a_{2}b_{1} & a_{2}b_{2}a_{2}b_{2} & a_{2}b_{2}a_{3}b_{1}& a_{2}b_{2}a_{3}b_{2}\\ a_{3}b_{1}a_{1}b_{1} & a_{3}b_{1}a_{1}b_{2} & a_{3}b_{1}a_{2}b_{1} & a_{3}b_{1}a_{2}b_{2} & a_{3}b_{1}a_{3}b_{1}& a_{3}b_{1}a_{3}b_{2}\\ a_{3}b_{2}a_{1}b_{1} & a_{3}b_{2}a_{1}b_{2} & a_{3}b_{2}a_{2}b_{1} & a_{3}b_{2}a_{2}b_{2} & a_{3}b_{2}a_{3}b_{1}& a_{3}b_{2}a_{3}b_{2} \end{bmatrix} \tag{Ex-05} \end{equation} Now, \begin{equation} |\mathbf{a}\rangle\langle\mathbf{a}|=\mathbf{a}\mathbf{a}^{\boldsymbol{\top}}= \begin{bmatrix} a_{1}\\ a_{2}\\ a_{3} \end{bmatrix} \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix} = \begin{bmatrix} a_{1}a_{1} & a_{1}a_{2} & a_{1}a_{3}\\ a_{2}a_{1} & a_{2}a_{2} & a_{2}a_{3}\\ a_{3}a_{1} & a_{3}a_{2} & a_{3}a_{3} \end{bmatrix} \tag{Ex-06} \end{equation} and \begin{equation} |\mathbf{b}\rangle\langle\mathbf{b}|=\mathbf{b}\mathbf{b}^{\boldsymbol{\top}}= \begin{bmatrix} b_{1}\\ b_{2} \end{bmatrix} \begin{bmatrix} b_{1} & b_{2} \end{bmatrix} = \begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} \tag{Ex-07} \end{equation} so \begin{align} \bigl(|\mathbf{a}\rangle\langle \mathbf{a}|\bigr)\boldsymbol{\otimes}\bigl(|\mathbf{b}\rangle\langle \mathbf{b}|\bigr)&= \begin{bmatrix} a_{1}a_{1} & a_{1}a_{2} & a_{1}a_{3}\\ a_{2}a_{1} & a_{2}a_{2} & a_{2}a_{3}\\ a_{3}a_{1} & a_{3}a_{2} & a_{3}a_{3} \end{bmatrix} \boldsymbol{\otimes} \begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} \nonumber\\ &= \begin{bmatrix} a_{1}a_{1}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} & a_{1}a_{2}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} & a_{1}a_{3}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix}\\ a_{2}a_{1}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} & a_{2}a_{2}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} & a_{2}a_{3}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix}\\ a_{3}a_{1}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} & a_{3}a_{2}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} & a_{3}a_{3}\begin{bmatrix} b_{1}b_{1} & b_{1}b_{2}\\ b_{2}b_{1} & b_{2}b_{2} \end{bmatrix} \end{bmatrix} \nonumber\\ & \tag{Ex-08} \end{align} that is \begin{equation} \bigl(|\mathbf{a}\rangle\langle \mathbf{a}|\bigr)\boldsymbol{\otimes}\bigl(|\mathbf{b}\rangle\langle \mathbf{b}|\bigr) = \begin{bmatrix} a_{1}a_{1}b_{1}b_{1} & a_{1}a_{1}b_{1}b_{2} & a_{1}a_{2}b_{1}b_{1} & a_{1}a_{2}b_{1}b_{2} & a_{1}a_{3}b_{1}b_{1}& a_{1}a_{3}b_{1}b_{2}\\ a_{1}a_{1}b_{2}b_{1} & a_{1}a_{1}b_{2}b_{2} & a_{1}a_{2}b_{2}b_{1} & a_{1}a_{2}b_{2}b_{2} & a_{1}a_{3}b_{2}b_{1}& a_{1}a_{3}b_{2}b_{2}\\ a_{2}a_{1}b_{1}b_{1} & a_{2}a_{1}b_{1}b_{2} & a_{2}a_{2}b_{1}b_{1} & a_{2}a_{2}b_{1}b_{2} & a_{2}a_{3}b_{1}b_{1}& a_{2}a_{3}b_{1}b_{2}\\ a_{2}a_{1}b_{2}b_{1} & a_{2}a_{1}b_{2}b_{2} & a_{2}a_{2}b_{2}b_{1} & a_{2}a_{2}b_{2}b_{2} & a_{2}a_{3}b_{2}b_{1}& a_{2}a_{3}b_{2}b_{2}\\ a_{3}a_{1}b_{1}b_{1} & a_{3}a_{1}b_{1}b_{2} & a_{3}a_{2}b_{1}b_{1} & a_{3}a_{2}b_{1}b_{2} & a_{3}a_{3}b_{1}b_{1}& a_{3}a_{3}b_{1}b_{2}\\ a_{3}a_{1}b_{2}b_{1} & a_{3}a_{1}b_{2}b_{2} & a_{3}a_{2}b_{2}b_{1} & a_{3}a_{2}b_{2}b_{2} & a_{3}a_{3}b_{2}b_{1}& a_{3}a_{3}b_{2}b_{2} \end{bmatrix} \tag{Ex-09} \end{equation} The matrices in the right hand sides of equations (Ex-05) and (Ex-09) are equal, so the left hand sides, verifying the validity of the identity (Ex-01).


(1) I suggest to take a look in my 2nd and 3rd answers therein : Total spin of two spin-1/2 particles about product states, product spaces and product transformations which, although used for spin, give informations and details in general.

Frobenius
  • 15,613