If we take a Hamiltonian density to be as following
$$ \mathscr{H}=\frac{1}{2}\Pi^2+\frac{1}{2}\partial_i\varphi\partial_i\varphi+\frac{1}{2}m^2\varphi^2+\frac{1}{4}\lambda\varphi^4, $$
and we have the following action
$$ \mathcal{S}=\int \mathrm{d}^{d+1}x(\Pi\dot\varphi-\mathscr{H}). $$
How am I suppose to calculate
$$ \delta\mathcal{S}=\int\mathrm{d}^{d+1}x\frac{\delta\mathcal{S}[\varphi]}{\delta\varphi(x)}\delta\varphi(x)+\dots $$
and
$$ \delta\mathcal{S}=\int\mathrm{d}^{d+1}x\frac{\delta\mathcal{S}[\Pi]}{\delta\Pi(x)}\delta\Pi(x)+\dots $$
For example with $\varphi$:
$$ \frac{\delta\mathcal{S}[\varphi(x)]}{\delta\varphi(x)}=\int\mathrm{d}^{d+1}y\frac{\delta}{\delta\varphi(x)}(\Pi\dot\varphi+\mathscr{H}), $$
which gives me
$$ \frac{\delta\mathcal{S}[\varphi(x)]}{\delta\varphi(x)}=\int\mathrm{d}^{d+1}y\left(\partial_0(\Pi\delta^{d+1}(x-y))-\dot\Pi\delta^{d+1}(x-y)-\frac{\delta\mathscr{H}}{\delta\varphi(x)}\right). $$
I know I am supposed to get to the Hamilton's equations
$$\dot\Pi=-\frac{\delta\mathcal{H}}{\delta\varphi}$$
where $$\mathcal{H}=\int\mathrm{d}^{d}x\mathscr{H},$$ but it seems like it won't work.