Let's consider an arbitrary infinitesimal transformation of the fields and their coordinates :
$$x'^{\mu}= x^{\mu} + \delta x^{\mu} = x^{\mu} + \frac{\delta x^{\mu}}{\delta{\omega}^a}{\omega}^a\tag{1}$$
$${\Phi}'(x') = {\Phi}(x) + \delta\Phi= {\Phi}(x) + \frac{\delta\Phi}{\delta\omega^a}{\omega}^a\tag{2}$$
where ${\{\omega}^a\}$ is a set of infinitesimal parameters. The corresponding variation of the Action is:
$$\delta S= \delta (\int{dx \,\mathcal{L}[\Phi,\partial^{\mu}\Phi]})=\int{(dx \, \delta \mathcal{L}} +\mathcal{L}\,\delta dx)= \int{dx (\delta \mathcal{L}+\mathcal{L}\,\partial_{\mu}\delta x^{\mu})}\tag{3}$$
Now if
$$\delta=\delta_0 + \delta x^{\mu}\partial_{\mu},\tag{4}$$
where:
$\delta_0 \phi (x)=\phi'(x)-\phi(x)$ at first order, then the variation becomes:
$$\delta S=\int{dx\,(\delta\mathcal{L}+\mathcal{L}\,\partial_{\mu}\delta x^{\mu})}=\int{dx(\delta_0\mathcal{L}+\delta x^{\mu}\partial_{\mu}\mathcal{L}+\mathcal{L}\,\partial_{\mu}\delta x^{\mu})}$$ $$=\int{dx\,(\delta_0\mathcal{L}+ \partial_\mu(\mathcal{L}\delta x^{\mu}))}=\int{dx\,(\frac{\partial\mathcal{L}}{\partial{\Phi}}\delta_0\Phi}+\frac{\partial{\mathcal{L}}}{\partial[\partial_\mu\Phi]}\delta_0\partial_\mu\Phi+ \partial_\mu(\mathcal{L}\delta x^{\mu})).\tag{5}$$
Using the Euler-Lagrange equations and commuting $\delta_0$ and $\partial$, the last integral becomes:
$$\delta S=\int{dx\,\partial_\mu(\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\delta_0\Phi+\mathcal{L}\delta x^\mu)}.\tag{6}$$
Now we go back to $\delta$ from $\delta_0$:
$$\delta S =\int{dx\,\partial_\mu(\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\delta\Phi-\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\delta x^\nu\partial_\nu\Phi+\mathcal{L}\delta x^\mu)}\tag{7}$$
and finally:
$$\delta S =\int{dx\,\partial_\mu(\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\delta\Phi-\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\delta x^\nu\partial_\nu\Phi+\mathcal{L}\delta x^\mu)} \\ =\int{dx\,\partial_\mu[\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\delta\Phi+(\mathcal{L}\delta^\mu_\nu-\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\partial_\nu\Phi)\delta x^\nu]}\\ =\int{dx\,\partial_\mu\{[\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\frac{\delta\Phi}{\delta\omega^a}+(\mathcal{L}\delta^\mu_\nu-\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\partial_\nu\Phi)\frac{\delta x^\nu}{\delta\omega^a}]\delta\omega^a\}}.\tag{8}$$
Now defining:
$$j^{a\mu} = (\frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\partial_\nu\Phi-\mathcal{L}\delta^\mu_\nu)\frac{\delta x^\nu}{\delta\omega^a} - \frac{\partial\mathcal{L}}{\partial[\partial_\mu\Phi]}\frac{\delta\Phi}{\delta\omega^a}\tag{9} $$
we eventually get:
$$\delta S = - \int{dx\,\partial_\mu(j^{a\mu}\delta\omega^a)}.\tag{10}$$
Let's suppose for now that $\{\omega^a\}$ are $x$-independent, such that:
$$\delta S = - \int{dx\,\partial_\mu(j^{a\mu})\delta\omega^a}.\tag{11}$$
Here's my first question: do I need to ask that $S$ is invariant under my transformations in order to get $$\partial_\mu\,j^{a\mu}=0~?\tag{12}$$ Or can the transformation be arbitrary given that in every case $$\delta S = 0\tag{13}$$ for all infinitesimal variations of the fields satisfying Euler-Lagrange dynamical equations?
Then it comes my second question. My book$^{(1)}$ says that, even not taking EL equations into account, the variation of the action under infinitesimal arbitrary transformation $(1),(2)$ is: $$\delta S=-\int{dx\,j^{\mu a}\partial_{\mu}\omega^a}\tag{14}.$$ Now I don't know how $(14)$ could be derived without taking EL equations into account beacause if $j^{\mu a}$ does not have $\frac{\partial\mathcal{L}}{\partial\Phi}$ terms is just thanks to those equations.
$^{(1)}$Philippe Di Francesco, Pierre Mathieu, David Sénéchal - Conformal Field Theory, page 41.