Let's consider Poisson bracket
$$\left\{ A,B\right\} =\alpha_{p} \left( \frac{\partial A}{\partial p_{k}}\frac{\partial B}{\partial q^{k}}-\frac{% \partial A}{\partial q^{k}}\frac{\partial B}{\partial p_{k}}\right) \tag{1}$$
where $\alpha _{p}=\pm 1;$ then
$$\frac{dA}{dt}=\frac{1}{% \alpha_{p}}\left\{ H,A\right\} \tag{2}$$ we know relation between Poisson bracket and commutator
$$\left\{ \hat{O}_{A},\hat{O}_{B}\right\} =i \alpha_{c}\left[ \hat{O}_{A},\hat{O}_{B}\right] \tag{3}$$
then Heisenberg equation
$$\frac{d\hat{A}}{dt}=\frac{i \alpha_{c}% }{\alpha_{p} }\left[ \hat{H},\hat{A}\right] \tag{4}$$
for momentum and coordinate
$$\frac{d\hat{p}}{dt}=\frac{i \alpha_{c}}{\alpha_{p} }\left[ \hat{H},\hat{p}\right] \qquad\text{and} \qquad\frac{d\hat{q}}{dt}=\frac{i \alpha_{c}}{\alpha_{p} }\left[ \hat{H},\hat{q}% \right] \tag{5}$$
finally we get
$$\frac{i \alpha_{c}}{\alpha_{p} }\frac{\partial \psi }{\partial t}=H\psi\tag{6} $$
so there are two independent parameters $\alpha_{c}$ and $\alpha_{p} $ I can choose $\alpha_{c}=1$ and $\alpha_{p}=-1$.
Is that computation correct?