1

Consider a particle of mass $m$ under an harmonic potential, $V=\frac12 kx^2$. The coherence states

$$\psi_\alpha=e^{-{{1}\over{2}}|\alpha|^2}\sum_{n=0}^\infty{{\alpha^n}\over{\sqrt{n!}}}\psi_n$$

where $\psi_n$ are the energy eigenfunctions, are eigenfunctions of the annihilation operator ($â \psi_\alpha =\alpha\psi_\alpha$). How could I determine the standard deviation of the position and momentum of the particle in state $\psi_\alpha$?

DanielSank
  • 24,439
Quaerendo
  • 580
  • 5
  • 21

0 Answers0