I saw a answer for Why are these two definitions for symmetries in the Lagrangian equivalent?
I have an example has $\delta \mathcal{L}=0$ but $\delta S \neq 0$ and $$\delta S \neq \epsilon \int_{\partial\Omega} d^3 x f .\tag{1} $$
Action $$S=\int_\Omega d^4x~\mathcal{L},\tag{2}$$ $$\mathcal{L}=\frac{1}{2}(\partial_t \phi(t,\mathbf{x}))^2 -\frac{1}{2}(\partial_\mathbf{x} \phi(t,\mathbf{x}))^2.\tag{3}$$
Transformation: $$x\rightarrow x'=\lambda x,\tag{4}$$ $$\phi(x)\rightarrow\phi'(x')=\lambda\phi(x).\tag{5}$$
This transformation has $$\delta\mathcal{L}=\mathcal{L}(\partial_{x'}\phi'(x'),\phi'(x'))-\mathcal{L}(\partial_{x}\phi(x),\phi(x))=0, \tag{6}$$ $$\delta S= \frac{1}{2}\int_{\Omega'} d^4x' ((\partial_{t'} \phi(t',\mathbf{x'}))^2 -(\partial_{\mathbf{x}'} \phi(t',\mathbf{x}'))^2) - \frac{1}{2}\int_\Omega d^4x ((\partial_t \phi(t,\mathbf{x}))^2 -(\partial_\mathbf{x} \phi(t,\mathbf{x}))^2)=(\lambda^4-1)S\tag{7}$$
Note: $$\int_{\Omega'}d^4x'=\int_{\Omega}|\frac{\partial x'^\mu}{\partial x^\nu}|d^4x=\int_{\Omega}\lambda^4 d^4 x.\tag{8}$$
My question:
According to this answer, this transformation is L$1$ but is not S$1$ or S$2$. So does this transformation has conserved current? I feel like it's not a symmetry.
PS: According to Qmechanic's answer: there're two different definition of $\delta \mathcal{L}$
The first one:
$$\delta_1 \mathcal{L}=\mathcal{L}(\phi'(x'),\partial'_\mu\phi'(x'),x')-\mathcal{L}(\phi(x ),\partial _\mu\phi (x ),x )= [\mathcal{L}]_\phi \bar\delta \phi+\partial_\mu(\frac{\partial \mathcal{L}}{\partial(\partial_\mu \phi)}\bar\delta \phi)+ (\partial_\mu \mathcal{L})\delta x^\mu$$
The second one:
$$\delta_2 \mathcal{L}=J \mathcal{L}(\phi'(x'),\partial'_\mu\phi'(x'),x')-\mathcal{L}(\phi(x ),\partial _\mu\phi (x ),x )$$ with Jacobian $J$ $$J=\det(\frac{\partial x'^\mu}{\partial x^\nu})$$
$$\delta_2 \mathcal{L}=[\mathcal{L}]_\phi \bar\delta \phi+\partial_\mu(\frac{\partial \mathcal{L}}{\partial(\partial_\mu \phi)}\bar\delta \phi)+ \partial_\mu (\mathcal{L}\delta x^\mu) = \delta_1 \mathcal{L}+ \mathcal{L} (\partial_\mu \delta x^\mu)$$
When we consider the symmetry transformation, we need to compute $\delta_2 \mathcal{L}$ instead of $\delta_1 \mathcal{L}$. After using the definition of $\delta_2 \mathcal{L}$, the symmetry defined by $\delta_2 \mathcal{L}$ is always consistent to the symmetry defined by $\delta S$.