1

I tried to apply the procedure found in this link - derive angular velocity from infinitesimal rotation matrix by small angle approximation - to calculate $\omega$ from the rotation matrix $\mathbf{R}^{T}$. The specific situation, where I tried to do this can be found in the picture below:

relation of angles and bases

Now in my example the basis of the inertial and moving coordinate system may be given by the vectors $\overrightarrow{e}_{x}$, $\overrightarrow{e}_{y}$, $\overrightarrow{e}_{z}$ and $\overrightarrow{e}_{1}(t)$, $\overrightarrow{e}_{2}(t)$, $\overrightarrow{e}_{3}(t)$ respectively.

Here are the projected views (projected along $\overrightarrow{e}_{x}$ and $\overrightarrow{e}_{z}$) of the basis-vectors, where $\alpha$ ($\dot{\alpha}=\Omega$) shall be the angle enclosed by $\overrightarrow{e}_{z}$ and $\overrightarrow{e}_{3}(t)$:

projections of basis vectors

In the views each vector is noted with its projected length.

The coordinate vectors of any point shall be linked by the Rotation Matrix $\mathbf{R'}$:

$\underbrace{[\overrightarrow{u}]_{i}}_{\textrm{coordinate vector in inertial frame }}=\mathbf{R'}\cdot\underbrace{[\overrightarrow{u}]_{r}}_{\textrm{coordinate vector in rotating frame }}$

I think $\mathbf{R'}$ would be:

$\mathbf{R'}=\left[\begin{array}{ccc} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta)\cdot\cos(\alpha) & \cos(\theta)\cdot\cos(\alpha) & \sin(\alpha)\\ -\sin(\theta)\cdot\sin(\alpha) & -\cos(\theta)\cdot\sin(\alpha) & \cos(\alpha) \end{array}\right]$.

According to the example I linked above, I can approximate $\mathbf{R'}$ as:

$\mathbf{R'}\simeq\left[\begin{array}{ccc} 1 & -\delta \theta & 0\\ \delta \theta & 1 & \delta \alpha\\ 0 & -\delta \alpha & 1 \end{array}\right]=\left[\begin{array}{ccc} 0 & -\delta \theta & 0\\ \delta \theta & 0 & \delta \alpha\\ 0 & -\delta \alpha & 0 \end{array}\right]+\boldsymbol{I}_{3x3}=S(\omega)+\boldsymbol{I}_{3x3}=\delta\overrightarrow{E}\times+\boldsymbol{I}_{3x3}$

where $S(\delta \theta,\delta \alpha)$ is a Skewsymmetric Matrix and $\delta \overrightarrow{E}=\left[\begin{array}{c} -\delta \alpha\\ 0\\ \delta \theta \end{array}\right]$.

Analogous to the example it follows:

$\frac{\delta}{\delta t}[\overrightarrow{u}]_{i}=\frac{\delta}{\delta t}E\times[\overrightarrow{u}]_{r}=\underbrace{\left[\overrightarrow{\omega}_{r}\right]_{i}}_{\textrm{angular velocity of rotating frame expressed in inertial frame}}\times[\overrightarrow{u}]_{r}$.

That means, that $\left[\overrightarrow{\omega}_{r}\right]_{i}=\left[\begin{array}{c} -\dot{\alpha}\\ 0\\ \dot{\theta} \end{array}\right]$.

That seems to be wrong, because by inspection I get:

$\left[\overrightarrow{\omega}_{r}\right]_{i}=\left[\begin{array}{c} -\dot{\alpha}\\ \dot{\theta\cdot\sin(\alpha)}\\ \dot{\theta\cdot\cos(\alpha)} \end{array}\right]\neq\left[\begin{array}{c} -\dot{\alpha}\\ 0\\ \dot{\theta} \end{array}\right]$.

Here is my question: What is wrong?

Qmechanic
  • 201,751
  • Hi and welcome to physics.SE! Please note that homework-like questions and check-my-work questions are generally considered off-topic here. We intend our questions to be potentially useful to a broader set of users than just the one asking, and prefer conceptual questions over those just asking for a specific computation. – ACuriousMind Dec 19 '17 at 15:12
  • What's wrong is that you assumed $\alpha$ is negligibly small. In that limit, you'll get $[-\dot\alpha, \dot\theta \sin\alpha, \dot\theta \cos\alpha] \to [-\dot\alpha, 0, \dot\theta]$. – David Hammen Dec 19 '17 at 16:17
  • @ACuriousMind Hi and thank you for the Correction. Should I rather repost my changed question or should I edit it here? – B. Preiss Dec 19 '17 at 18:35
  • Please edit it here - once it is edited by you, it will automatically be placed in a review queue where users can decide whether it is now on-topic. – ACuriousMind Dec 19 '17 at 18:38
  • so, I posted my question here link as a follow-up. Hope it is better that way! – B. Preiss Dec 19 '17 at 23:58

0 Answers0