The scalar quantum field operator is defined
$$\phi_0(\vec x,t) = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} \left(a_p e^{-ipx}+a_p^{\dagger}e^{ipx}\right)$$
in Schwartz eq. 2.78. Here $\omega_p = \sqrt{\vec{p}^2+m^2}$. One can show that
$$\int \frac{d^3\vec{k}}{2\omega_k} = \int d^4k \delta(k^2-m^2)\theta(k^0)$$
is a Lorentz invariant measure. I don't see how the measure in the definition of the quantum field is Lorentz invariant because of that square root.
$$\phi(\vec x) |0\rangle = \int \frac{d^3p}{(2\pi)^3}\frac{1}{2\omega_p} e^{-ip\cdot x} |\vec{p}\rangle$$
where we used $a^{\dagger}_p|0\rangle = \frac{1}{\sqrt{\omega_p}} |\vec{p}\rangle$.
– Dwagg Dec 25 '17 at 01:15$$\langle 0 |\phi(\vec x)|\vec{p}\rangle = e^{ip\cdot x}.$$
And since the $\phi$ operator produces Lorentz invariant things, it is Lorentz invariant.
Is this true? Can this be made rigorous?
– Dwagg Dec 25 '17 at 01:18