Say we have 3 spin-1/2 particles
In the $|m_1, m_2, m_3 \rangle$ basis we have 8 states where where $m_1,m_2,m_3=\frac{1}{2},-\frac{1}{2}$
$$|\frac{1}{2} \frac{1}{2} \frac{1}{2}\rangle,|\frac{1}{2} \frac{1}{2} -\frac{1}{2}\rangle,|\frac{1}{2} -\frac{1}{2} \frac{1}{2}\rangle,|\frac{1}{2} -\frac{1}{2} -\frac{1}{2}\rangle,$$ $$|-\frac{1}{2} \frac{1}{2} \frac{1}{2}\rangle,|-\frac{1}{2} \frac{1}{2} -\frac{1}{2}\rangle,|-\frac{1}{2} -\frac{1}{2} \frac{1}{2}\rangle,|-\frac{1}{2} -\frac{1}{2} -\frac{1}{2}\rangle,$$
In the $|S, m\rangle$ basis there are only 6 states where $S=\frac{3}{2},\frac{1}{2}$ and $m= \frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}$ $$|\frac{3}{2} \frac{3}{2}\rangle,|\frac{3}{2} \frac{1}{2}\rangle,|\frac{3}{2} -\frac{1}{2}\rangle, |\frac{3}{2} -\frac{3}{2}\rangle, |\frac{1}{2} \frac{1}{2}\rangle, |\frac{1}{2} -\frac{1}{2}\rangle,$$
Obviously there are 8 states, which I believe is a quartet and two doublets. Where then, have I gone wrong? Are there two states each with $S=\frac{1}{2}$ and $S=-\frac{1}{2}$? Is it incorrect to say that $|S, m\rangle$ is a basis, as $S,m$ do not form a CSCO? Must another quantum number be added to form a basis?
Similarly, if we have 3 spin-1 particles, we get 27 states in the $|m_1,m_2,m_3\rangle$ basis for $m_1,m_2,m_3=1,0,-1$, but only 15 in the $|S,m\rangle$ basis for $S=1,2,3$.