Given an electric charge $q$ of mass $m$ moving at a velocity ${\bf v}$ in a region containing both electric field ${\bf E}(t,x,y,z)$ and magnetic field ${\bf B}(t,x,y,z)$ (${\bf B}$ and ${\bf E}$ are derivable from a scalar potential $\phi(t, x, y, z) $and a vector potential ${\bf A}(t,x,y,z)$),
knowing that
- ${\bf E}=- \nabla \phi - \frac{\partial {\bf A}} {\partial t}$
- ${\bf B}= \nabla \times {\bf A} $
- $U=q \phi - q {\bf A} \cdot{\bf v}$ ($U$ is the velocity-dependent potential)
the Lagrangian is $$L=(1/2) m v^2-U=(1/2) m v^2- q\phi + q{\bf A} \cdot{\bf v}.$$
Considering just the $x$-component of Lagrange's equation, how can I obtain $$m \ddot{x}=q\left (v_x \frac{\partial A_x}{\partial x} + v_y \frac {\partial A_y}{ \partial x} + v_z \frac{\partial A_z} {\partial x}\right )-q\left (\frac{\partial \phi }{\partial x} + \frac{d A_x}{dt}\right) ~?$$
2)$\phi(t,x,y,z)$ returns a number, a 1-dimensional vector that has only one component, function of x, y,z (and t?) .. thanks again
– sunrise Oct 14 '12 at 10:03