Consider a simple scalar field and its Lagrangian $L=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi$. Then say you have the following transformation
$$x^{\mu}\rightarrow e^{\omega}x^{\mu},\tag{1}$$
$$\phi\left(x\right)\rightarrow e^{-\omega}\phi\left(e^{\omega}x\right).\tag{2}$$
What is the associated conserved current?
Attempt:
I compute the Euler-Lagrange (EL) equations,
$$\partial_{\mu}\left(\frac{\partial L}{\partial\left(\partial_{\mu}\phi\right)}\right)=\frac{\partial L}{\partial\phi}\quad\Leftrightarrow\quad\partial_{\mu}\partial^{\mu}\phi=0,\tag{3}$$
write the transformations infinitesimal as
$${\phi\left(x\right)\rightarrow\left(1-\omega+\ldots\right)\phi=\phi-\omega\phi}\quad\Rightarrow\delta\phi=-\omega\phi\tag{4}$$
$${\delta L=0}\tag{5}$$
and compute the conserved current, factoring out $\omega$, from
$$j^{\mu}=\frac{\partial L}{\partial\left(\partial_{\mu}\phi\right)}\delta\phi-\delta L=-\phi\partial^{\mu}\phi\tag{6}$$
but something must be wrong because I can't show it is conserved,
$$\partial_{\mu}j^{\mu}=-\partial_{\mu}\left(\phi\partial^{\mu}\phi\right)=-\partial_{\mu}\phi\partial^{\mu}\phi-\phi\underset{=0\left(EL\right)}{\underbrace{\partial_{\mu}\partial^{\mu}\phi}=}-\partial_{\mu}\phi\partial^{\mu}\phi?\tag{7}$$
Can you please see what am I doing wrong?