Consider the standard Dirac Lagrangian, $\mathcal{L}=\overline{\psi}\left(i\gamma^{\mu}\partial_{\mu}-m\right)\psi$, and a transformed one differing by a total derivative
$$ \mathcal{L}'=\mathcal{L}-\frac{i}{2}\partial_{\mu}\left(\overline{\psi}\gamma^{\mu}\psi\right). $$
The energy-momentum tensor computed from the Dirac Lagrangian can be shown to be $T^{\mu\nu}=i\overline{\psi}\gamma^{\mu}\partial^{\nu}\psi$. Given that, it should be possible to prove that the energy-momentum tensor computed from $\mathcal{L}'$ is given by $T'^{\mu\nu}=T^{\mu\nu}-\frac{i}{2}\partial^{\nu}\left(\overline{\psi}\gamma^{\mu}\psi\right)$.
I was trying to do it but I can't finish it. I'm using the standard formula for the energy-momentum tensor,
$$ T^{\mu\nu}=\frac{\partial\mathcal{L}}{\partial\left(\partial_{\mu}\psi\right)}\partial^{\nu}\psi-\eta^{\mu\nu}\mathcal{L} $$
and doing,
$$ \begin{array}{ll} T'^{\mu\nu} & =\frac{i}{2}\overline{\psi}\gamma^{\mu}\partial^{\nu}\psi-\eta^{\mu\nu}\left(\mathcal{L}-\frac{i}{2}\partial_{\mu}\left(\overline{\psi}\gamma^{\mu}\psi\right)\right)\\ & =T^{\mu\nu}-\frac{i}{2}\overline{\psi}\gamma^{\mu}\partial^{\nu}\psi+\frac{i}{2}\partial^{\nu}\left(\overline{\psi}\gamma^{\mu}\psi\right)\\ & =T^{\mu\nu}+\frac{i}{2}\left(\partial^{\nu}\overline{\psi}\right)\gamma^{\mu}\psi\\ & =? \end{array} $$
Edit:
Following @Quantum spaghettification's suggestion I get
$$ \begin{array}{ll} T'^{\mu\nu} & =\frac{\partial\mathcal{L}'}{\partial\left(\partial_{\mu}\psi\right)}\partial^{\nu}\psi+\frac{\partial\mathcal{L}'}{\partial\left(\partial_{\mu}\overline{\psi}\right)}\partial^{\nu}\overline{\psi}-\eta^{\mu\nu}\mathcal{L}'\\ & =\frac{i}{2}\overline{\psi}\gamma^{\mu}\partial^{\nu}\psi-\frac{i}{2}\gamma^{\mu}\psi\partial^{\nu}\overline{\psi}-\eta^{\mu\nu}\left(\mathcal{L}-\frac{i}{2}\partial_{\mu}\left(\overline{\psi}\gamma^{\mu}\psi\right)\right)\\ & =T^{\mu\nu}-\frac{i}{2}\overline{\psi}\gamma^{\mu}\partial^{\nu}\psi-\frac{i}{2}\gamma^{\mu}\psi\partial^{\nu}\overline{\psi}+\frac{i}{2}\partial^{\nu}\left(\overline{\psi}\gamma^{\mu}\psi\right)\\ & =T^{\mu\nu}-\frac{i}{2}\gamma^{\mu}\psi\partial^{\nu}\overline{\psi}+\frac{i}{2}\left(\partial^{\nu}\overline{\psi}\right)\gamma^{\mu}\psi\\ & =? \end{array} $$