I am trying to derive the Klein-Gordon equation for the case of GR using the action:
$$S\left[ {\varphi ,{g_{\mu \nu }}} \right] = \int {\sqrt g {d^4}x\left( { - {1 \over 2}{g^{\mu \nu }}{\nabla _\mu }\varphi {\nabla _\nu }\varphi - {1 \over 2}{m^2}{\varphi ^2}} \right)} \tag{1}$$
So in the Euler - Lagrange equation for the SR case which is: $${\partial _\mu }\left( {{{\partial L} \over {\partial \left( {{\partial _\mu }\varphi } \right)}}} \right) = {{\partial L} \over {\partial \varphi }}\tag{2}$$ I use the correspondence $${\partial \over {\partial \left( {{\partial _\mu }\varphi } \right)}} \to {\nabla _{{\nabla _\mu }\varphi }},{\partial \over {{\partial _\mu }\varphi }} \to {\nabla _\mu } \tag{3}$$ and so, $${\nabla _{{\nabla _\mu }\varphi }}L = - {1 \over 2}\sqrt g {g^{\mu \nu }}{\nabla _\nu }\varphi - {1 \over 2}\sqrt g {g^{\mu \nu }}{\nabla _\mu }\varphi {\nabla _{{\nabla _\mu }\varphi }}\left( {{\nabla _\nu }\varphi } \right) \tag{4}$$ and using this dubious relation that I am unable to prove (extending the SR case of partial derivatives),
$${\nabla _{{\nabla _\mu }\varphi }}\left( {{\nabla _\nu }\varphi } \right) = \delta _\nu ^\mu \tag{5}$$ I finally get the desired KG equation, $${\nabla _\mu }\left( { - \sqrt g {g^{\mu \nu }}{\nabla _\nu }\varphi } \right) = - \sqrt g {m^2}\varphi $$ However, I am very uncomfortable with my assumption 5 that I am unable to prove. Is my analysis correct? I am a 60y old doing this as retirement fun so please don't cut me down too brutally :-)