8

Under the entry "Isospin" in Wikipedia, it states:

The pions are assigned to the triplet (the spin-1, $\mathbf{3}$, or adjoint representation) of $SU(2)$

Why is the symmetry not $SU(3)$ since there are three particles? And in what circumstance do we have an $SU(3)$ symmetry?

Shen
  • 1,633
  • 2
    Seems like this was answered here: https://physics.stackexchange.com/q/351812/ – Ryan Thorngren Jul 29 '18 at 18:59
  • Isospin SU(2) has a doublet representation, (u,d), a triplet representation, the 3 πs, an isoquartet representation, the 4 Δs, and so on... Do you get the formal connection to angular momentum now? – Cosmas Zachos Jul 29 '18 at 19:15
  • @Cosmas Zachos - I don't know how this is connected with angular momentum. Can you explain more clearly? – Shen Jul 30 '18 at 17:43
  • SU(2) ~ SO(3) is also the group of angular momentum, except here in isospace, an abstract notional space. The spin doublets, spin 1/2, correspond to isodoublets here, u,d quarks. The spin triplets, spin 1, like 3 vectors, correspond to isotriplets, the pions. The spin quartets, spin 3/2, correspond to the four $\Delta$ baryons, etc.... All you need do is recall the representation theory of angular momentum, otherwise the language would be opaque. – Cosmas Zachos Jul 30 '18 at 18:44
  • My sense is you are confusing the dimensionality of the representation with the dimension of the Lie algebra, namely the number of independent generators involved. The pions can be recast into a real 3-vector, so SO(3) ~ SU(2). But fermions cannot, being intrinsically complex spinors, so you need SU(2) for 2 flavors of quark and SU(3) for 3 such. – Cosmas Zachos Jul 31 '18 at 15:35
  • @CosmasZachos Could you turn that explanation into an answer? – rob Sep 04 '18 at 22:46

3 Answers3

11

$\newcommand{\BK}[3]{\left|{#1},{#2}\right\rangle_{#3}} \newcommand{\BKB}[3]{\mathbf{\left|{#1},{#2}\right\rangle_{\boldsymbol{#3}}}} \newcommand{\FR}[2]{{\textstyle \frac{#1}{#2}}} \newcommand{\BoldExp}[2]{{#1}^{\boldsymbol{#2}}} \newcommand{\CMRR}[2] { \begin{bmatrix} #1 \\ #2 \end{bmatrix} } \newcommand{\MM}[4] { \begin{bmatrix} #1 & #2\\ #3 & #4 \end{bmatrix} } \newcommand{\MMM}[9] { \begin{bmatrix} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \\ \end{bmatrix} } \newcommand{\CMRRRR}[4] { \begin{bmatrix} #1 \\ #2 \\ #3 \\ #4 \end{bmatrix} } \newcommand{\CMRRR}[3] { \begin{bmatrix} #1 \\ #2 \\ #3 \end{bmatrix} } \newcommand{\RMCC}[2] { \begin{bmatrix} #1 & #2 \end{bmatrix} } \newcommand{\RMCCC}[3] { \begin{bmatrix} #1 & #2 & #3 \end{bmatrix} } \newcommand{\RMCCCC}[4] { \begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix} } \newcommand{\OSS}[1] {\overset{\boldsymbol{\sim}}{#1}} \newcommand{\BoldSub}[2]{{#1}_{\boldsymbol{#2}}} \newcommand{\OSB}[1] {\overset{\boldsymbol{-\!\!\!\!\!-}}{#1}}$

These pions are mesons, composite particles of a quark $\boldsymbol{\lbrace}\boldsymbol{u},\boldsymbol{d}\boldsymbol{\rbrace}$ and an antiquark $\boldsymbol{\lbrace}\OSB{\boldsymbol{u}},\overline{\boldsymbol{d}}\boldsymbol{\rbrace}$ :
\begin{equation} \begin{array}{cccccccc} &\boldsymbol{\lbrace}\boldsymbol{u},\boldsymbol{d}\boldsymbol{\rbrace} \!\!\!\!\!&\boldsymbol{\otimes}& \!\!\!\!\boldsymbol{\lbrace}\OSB{\boldsymbol{u}},\overline{\boldsymbol{d}}\boldsymbol{\rbrace} & \!\!\boldsymbol{=}\!\! & \boldsymbol{\lbrace}\boldsymbol{\omega}\boldsymbol{\rbrace}& \!\!\!\!\boldsymbol{\oplus}\!\!&\boldsymbol{\lbrace}\BoldExp{\boldsymbol{\pi}}{-},\BoldExp{\boldsymbol{\pi}}{0},\BoldExp{\boldsymbol{\pi}}{+}\boldsymbol{\rbrace} & \\ & \boldsymbol{2}\!\!\!\!\! & \boldsymbol{\otimes} & \!\!\!\!\OSB{\boldsymbol{2}} & \!\!\boldsymbol{=}\!\!&\boldsymbol{1}&\!\!\!\!\boldsymbol{\oplus}\!\!&\boldsymbol{3}& \end{array} \tag{01}\label{eq01} \end{equation} \begin{align} &\left\{ \boldsymbol{\omega} = \sqrt{\tfrac{1}{2}}\left(\boldsymbol{u}\OSB{\boldsymbol{u}}+\boldsymbol{d}\overline{\boldsymbol{d}} \right)\hphantom{=\,}\right\} \quad \,\text{the singlet }\boldsymbol{1} \tag{02.1}\label{eq02.1}\\ &\left. \begin{cases} \BoldExp{\boldsymbol{\pi}}{-} =\boldsymbol{d}\OSB{\boldsymbol{u}} \\ \BoldExp{\boldsymbol{\pi}}{0} =\sqrt{\tfrac{1}{2}}\left(\boldsymbol{u}\OSB{\boldsymbol{u}}-\boldsymbol{d}\overline{\boldsymbol{d}} \right)\\ \BoldExp{\boldsymbol{\pi}}{+} =\boldsymbol{u}\overline{\boldsymbol{d}} \end{cases}\right\}\quad \text{the triplet }\boldsymbol{3} \tag{02.2}\label{eq02.2} \end{align} The subspaces $\;\boldsymbol{1},\boldsymbol{3}\;$ are invariant under the isospin group $\;SU(2)$.


EDIT

responds to a comment by the OP owner :

This explanation is fine. But I still have a puzzlement. While the three pions ($\pi^{-}, \pi^{0}, \pi^{+}$) have an $SU(2)$ symmetry, why do the three quarks ($u,d,s$) have an $SU(3)$ [not $SU(2)$] symmetry? More generally, given three similar particles, how do we know whether they have an $SU(2)$ symmetry or an $SU(3)$ symmetry?

We must not confuse the number $\;n\;$ of the symmetry group $\;SU(n)\;$ with the number $\;m\;$ of the resulting $\;m-$plets (singlets,doublets,triplets,...nonets, etc).

In the following three examples the number $\;n\;$ of the symmetry group $\;SU(n)\;$ is the number of the $\;n\;$ independent $\;n-$dimensional systems we put together to build a composite system.

$\color{blue}{\textbf{Example A :}}$ If we put together a particle $\;\alpha\;$ of spin angular momentum $\;j_{\alpha}=\frac12\;$ with a particle $\;\beta\;$ of spin angular momentum $\;j_{\beta}=\frac12\;$ then the resulting multiplets is a singlet of angular momentum $\;j_{1}=0\;$ and a triplet of angular momentum $\;j_{2}=1\;$ \begin{equation} \boldsymbol{2}\boldsymbol{\otimes}\boldsymbol{2}=\boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{3} \tag{ed-01}\label{eqed-01} \end{equation} Now let apply the following $\;SU(2)\;$ transformations to the systems $\;\alpha,\beta\;$ (particles) respectively \begin{align} ^{\bf 2}U_{\bf \alpha} & = \MM{\hphantom{\boldsymbol{-}}g_{\bf \alpha}}{h_{\bf \alpha}}{\vphantom{h^{\boldsymbol{*}}_{\bf \beta}}\boldsymbol{-}h^{\boldsymbol{*}}_{\bf \alpha}}{g^{\boldsymbol{*}}_{\bf \alpha}}_{\bf a} \,,\quad g_{\bf \alpha}g^{\boldsymbol{*}}_{\bf \alpha}\boldsymbol{+}h_{\bf \alpha}h^{\boldsymbol{*}}_{\bf \alpha}=1 \tag{ed-02a}\label{eqed-02a}\\ ^{\bf 2}U_{\bf \beta} & = \MM{\hphantom{\boldsymbol{-}}g_{\bf \beta}}{h_{\bf \beta}}{\boldsymbol{-}h^{\boldsymbol{*}}_{\bf \beta}}{g^{\boldsymbol{*}}_{\bf \beta}}_{\bf b} \,,\quad g_{\bf \beta}g^{\boldsymbol{*}}_{\bf \beta}\boldsymbol{+}h_{\bf \beta}h^{\boldsymbol{*}}_{\bf \beta}=1 \tag{ed-02b}\label{eqed-02b} \end{align} In the composite system this is a $\;SU(4)\;$ transformation, the product of the two ones above

\begin{equation} ^{\bf 4}U_{ f} = \left(^{\bf 2}U_{\bf \alpha}\right)\boldsymbol{\otimes}\left(^{\bf 2}U_{\bf \beta}\right) = \MM{\hphantom{\boldsymbol{-}}g_{\bf \alpha}}{h_{\bf \alpha}}{\vphantom{h^{\boldsymbol{*}}_{\bf \beta}}\boldsymbol{-}h^{\boldsymbol{*}}_{\bf \alpha}}{g^{\boldsymbol{*}}_{\bf \alpha}}_{\bf a}\!\!\! \boldsymbol{\otimes} \MM{\hphantom{\boldsymbol{-}}g_{\bf \beta}}{h_{\bf \beta}}{\boldsymbol{-}h^{\boldsymbol{*}}_{\bf \beta}}{g^{\boldsymbol{*}}_{\bf \beta}}_{\bf b}\!\!\! = \begin{bmatrix} \hphantom{\boldsymbol{-}}g_{\bf \alpha}g_{\bf \beta} & \hphantom{\boldsymbol{-}}g_{\bf \alpha}h_{\bf \beta} & \hphantom{\boldsymbol{-}}h_{\bf \alpha}g_{\bf \beta} & h_{\bf \alpha}h_{\bf \beta} \\ \boldsymbol{-}g_{\bf \alpha}h^{\boldsymbol{*}}_{\bf \beta} & \hphantom{\boldsymbol{-}}g_{\bf \alpha}g^{\boldsymbol{*}}_{\bf \beta} & \boldsymbol{-}h_{\bf \alpha}h^{\boldsymbol{*}}_{\bf \beta} & h_{\bf \alpha}g^{\boldsymbol{*}}_{\bf \beta} \\ \boldsymbol{-}h^{\boldsymbol{*}}_{\bf \alpha}g_{\bf \beta} & \boldsymbol{-}h^{\boldsymbol{*}}_{\bf \alpha}h_{\bf \beta} & \hphantom{\boldsymbol{-}}g^{\boldsymbol{*}}_{\bf \alpha}g_{\bf \beta} & g^{\boldsymbol{*}}_{\bf \alpha}h_{\bf \beta} \\ \hphantom{\boldsymbol{-}}h^{\boldsymbol{*}}_{\bf \alpha}h^{\boldsymbol{*}}_{\bf \beta} & \boldsymbol{-}h^{\boldsymbol{*}}_{\bf \alpha}g^{\boldsymbol{*}}_{\bf \beta} & \boldsymbol{-}g^{\boldsymbol{*}}_{\bf \alpha}h^{\boldsymbol{*}}_{\bf \beta} & g^{\boldsymbol{*}}_{\bf \alpha}g^{\boldsymbol{*}}_{\bf \beta} \end{bmatrix}_{\bf e} \tag{ed-03}\label{eqed-03} \end{equation}

But the $\;SU(2)\;$ transformations in \eqref{eqed-02a},\eqref{eqed-02b} represent rotations in the real space $\;\mathbb{R}^{3}\;$ wherein both particles live, so they must be identical (we would not rotate one system differently from the other) \begin{equation} ^{\bf 2}U_{\bf \alpha} =\,^{\bf 2}U_{\bf \beta}=\, ^{\bf 2}U = \MM{\:\:g}{h}{\boldsymbol{-}h^{\boldsymbol{*}}}{\:\:g^{\boldsymbol{*}}} \,,\quad gg^{\boldsymbol{*}}\boldsymbol{+}hh^{\boldsymbol{*}}=1 \tag{ed-04}\label{eqed-04} \end{equation} so that \eqref{eqed-03} yields \begin{equation} ^{\bf 4}U_{ f} = \left(^{\bf 2}U_{\bf \alpha}\right)\boldsymbol{\otimes}\left(^{\bf 2}U_{\bf \beta}\right) =\left(^{\bf 2}U\right)^{\boldsymbol{\otimes}2} = \begin{bmatrix} \:g^{2} & \:\:gh & \:hg & \!\!\!h^{2} \\ \boldsymbol{-}gh^{\boldsymbol{*}} & \hphantom{\boldsymbol{-}}gg^{\boldsymbol{*}} & \boldsymbol{-}hh^{\boldsymbol{*}} & hg^{\boldsymbol{*}}\\ \boldsymbol{-}h^{\boldsymbol{*}}g & \,\boldsymbol{-}h^{\boldsymbol{*}}h & \hphantom{\boldsymbol{-}}g^{\boldsymbol{*}}g & g^{\boldsymbol{*}}h \\ \hphantom{\boldsymbol{-}}h^{\boldsymbol{*}2} & \:\:\boldsymbol{-}h^{\boldsymbol{*}}g^{\boldsymbol{*}} & \:\:\boldsymbol{-}g^{\boldsymbol{*}}h^{\boldsymbol{*}} & g^{\boldsymbol{*}2} \end{bmatrix}_{\bf e} \tag{ed-05}\label{eqed-05} \end{equation}

This matrix expressed in the basis of the irreducible direct sum \eqref{eqed-01} is \begin{equation} ^{\bf 4}\OSS{U}_{ f}= \begin{bmatrix} \begin{array}{c|ccc} \:\: 1 \:\: &\rule [0ex]{20pt}{0.0ex}&\rule [-2.5ex]{0pt}{6.0ex} \rule [0ex]{16pt}{0ex}& \rule [0ex]{16pt}{0ex}\\ \hline \rule [-3ex]{0pt}{6ex}&g^{2}& \sqrt{2} g h & h^{2} \\ \rule [-3ex]{0pt}{6ex}& -\sqrt{2} g h^{\boldsymbol{*}} & \left(g g^{\boldsymbol{*}}-h h^{\boldsymbol{*}}\right) & \sqrt{2} g^{\boldsymbol{*}} h \\ \rule [-3ex]{0pt}{6ex}& \left(h^{\boldsymbol{*}}\right)^{2} & - \sqrt{2}g^{\boldsymbol{*}} h^{\boldsymbol{*}} & \left(g^{\boldsymbol{*}}\right)^{2} \end{array} \end{bmatrix}_{\:\mathbf{f}} = \begin{bmatrix} \begin{array}{c|ccc} ^{\mathbf{1}}U_{\boldsymbol{\left[1\right]}}&\rule [0ex]{20pt}{0.0ex}&\rule [-2.5ex]{0pt}{6.0ex} \rule [0ex]{16pt}{0ex}& \rule [0ex]{16pt}{0ex}\\ \hline \rule [-3ex]{0pt}{6ex}&\rule [0.0ex]{50pt}{0.0ex}& \rule [0.0ex]{50pt}{0.0ex} &\rule [0.0ex]{50pt}{0.0ex}\\ \rule [-3ex]{0pt}{6ex}& & ^{\mathbf{3}}U_{\boldsymbol{\left[2\right]}} & \\ \rule [-3ex]{0pt}{6ex}& & & \end{array} \end{bmatrix}_{\:\mathbf{f}} \tag{ed-06}\label{eqed-06} \end{equation} where $\:^{\mathbf{1}}U_{\boldsymbol{\left[1\right]}}\:$ and $\:^{\mathbf{3}}U_{\boldsymbol{\left[2\right]}}\:$ are special unitary matrices in the spaces of the singlet and of the triplet respectively given by \begin{equation} ^{\mathbf{1}}U_{\boldsymbol{\left[1\right]}}= \begin{bmatrix} 1 \end{bmatrix} \quad \in SU(1)\equiv \{1\} \tag{ed-07}\label{eqed-07} \end{equation}

\begin{equation} ^{\mathbf{3}}U_{\boldsymbol{\left[2\right]}}= \begin{bmatrix} g^{2}& \sqrt{2} g h & h^{2} \rule [-3ex]{0pt}{6ex}\\ -\sqrt{2} g h^{\boldsymbol{*}} & \left(g g^{\boldsymbol{*}}-h h^{\boldsymbol{*}}\right) & \sqrt{2} g^{\boldsymbol{*}} h \rule [-3ex]{0pt}{6ex}\\ \left(h^{\boldsymbol{*}}\right)^{2} & - \sqrt{2}g^{\boldsymbol{*}} h^{\boldsymbol{*}} & \left(g^{\boldsymbol{*}}\right)^{2} \rule [-3ex]{0pt}{6ex} \end{bmatrix} \quad \in SU(3) \tag{ed-08}\label{eqed-08} \end{equation} So if we apply the $\;SU(2)\;$ transformation $\:^{\bf 2}U\:$ of \eqref{eqed-04} on both spaces in the product of the lhs of \eqref{eqed-01} then the spaces of the terms of the direct sum of the rhs side of the same equation remain invariant, the singlet \eqref{eq02.1} invariant under $\;SU(1)\;$ (more exactly unchanged) and the triplet \eqref{eq02.2} transformed under $\;SU(3)\;$ remaining in its invariant space.

We say that the symmetry group is $\;SU(2)$, NOT $\;SU(1)\;$ or $\;SU(3)\;$ of the resulting multiplets.

Reference link : Total spin of two spin-1/2 particles.


$\color{blue}{\textbf{Example B :}}$ The quark model of baryons consisting of three quarks. So, suppose we know the existence of three quarks only : $\boldsymbol{u}$, $\boldsymbol{d}$ and $\boldsymbol{s}$. Under full symmetry (the same mass) these are the basic states, let
\begin{equation} \boldsymbol{u}= \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \qquad \boldsymbol{d}= \begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix} \qquad \boldsymbol{s}= \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} \tag{ed-09}\label{eqed-09} \end{equation} of a 3-dimensional complex Hilbert space of quarks, say $\mathbf{Q}\equiv \mathbb{C}^{\boldsymbol{3}}$. A quark $\boldsymbol{\xi} \in \mathbf{Q}$ is expressed in terms of these basic states as \begin{equation} \boldsymbol{\xi}=\xi_1\boldsymbol{u}+\xi_2\boldsymbol{d}+\xi_3\boldsymbol{s}= \begin{bmatrix} \xi_1\\ \xi_2\\ \xi_3 \end{bmatrix} \qquad \xi_1,\xi_2,\xi_3 \in \mathbb{C} \tag{ed-10}\label{eqed-10} \end{equation} Let take 2 more quarks in order to construct baryons from 3 quarks \begin{equation} \boldsymbol{\eta}=\eta_1\boldsymbol{u}+\eta_2\boldsymbol{d}+\eta_3\boldsymbol{s}= \begin{bmatrix} \eta_1\\ \eta_2\\ \eta_3 \end{bmatrix} \:, \qquad \boldsymbol{\zeta}=\zeta_1\boldsymbol{u}+\zeta_2\boldsymbol{d}+\zeta_3\boldsymbol{s}= \begin{bmatrix} \zeta_1\\ \zeta_2\\ \zeta_3 \end{bmatrix} \tag{ed-11}\label{eqed-11} \end{equation} A baryon state $\:T\:$ in the product space \begin{equation} \mathbf{B}=\boldsymbol{3}\boldsymbol{\otimes}\boldsymbol{3}\boldsymbol{\otimes}\boldsymbol{3}=\mathbf{Q}\boldsymbol{\otimes}\mathbf{Q}\boldsymbol{\otimes}\mathbf{Q}\equiv \mathbb{C}^{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{C}^{\boldsymbol{3}}\boldsymbol{\otimes}\mathbb{C}^{\boldsymbol{3}}=\mathbb{C}^{\boldsymbol{27}} \tag{ed-12}\label{eqed-12} \end{equation} is the product of the states of above 3 quarks \begin{equation} T=\boldsymbol{\xi}\boldsymbol{\otimes}\boldsymbol{\eta}\boldsymbol{\otimes}\boldsymbol{\zeta} \tag{ed-13}\label{eqed-13} \end{equation} The final result of a full analysis is \begin{equation} \boldsymbol{3}\boldsymbol{\otimes}\boldsymbol{3}\boldsymbol{\otimes}\boldsymbol{3}= \boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{10}\boldsymbol{\oplus} \boldsymbol{8}^{\boldsymbol{\prime}}\boldsymbol{\oplus}\boldsymbol{8} \tag{ed-14}\label{eqed-14} \end{equation} that is the space of states of a baryon is the direct sum of a singlet $\;\boldsymbol{1}$, a decuplet $\;\boldsymbol{10}$, a mixed symmetric octet $\;\boldsymbol{8'}$ and a mixed anti-symmetric octet $\;\boldsymbol{8}$.

Now applying a $\;SU(3)\;$ transformation $\;^{\bf 3}U\;$ on the 3-dimensional space $\mathbf{Q}\equiv \mathbb{C}^{\boldsymbol{3}}$ results in a $\;SU(27)\;$ transformation $\;^{\bf 27}U\;$ on the 27-dimensional space $\;\mathbf{B}\;$ of equation \eqref{eqed-12} \begin{equation} ^{\bf 27}U = \left(^{\bf 3}U\right)\boldsymbol{\otimes}\left(^{\bf 3}U\right)\boldsymbol{\otimes}\left(^{\bf 3}U\right) =\left(^{\bf 3}U\right)^{\boldsymbol{\otimes}3} \tag{ed-15}\label{eqed-15} \end{equation} The space of each $\;m-$plet remains invariant and a state in this $\;m-$plet is transformed under a $\;SU(m)\;$ transformation, where $\;m=1,10,8,8$. But

We say that the symmetry group is $\;SU(3)$, NOT $\;SU(1)\;$ or $\;SU(10)\;$ or $\;SU(8)\;$ of the resulting multiplets.

Reference link : Symmetry in terms of matrices.

Frobenius
  • 15,613
  • ω , a vector meson, in the same breath as pseudscalars, just because the η is messier? Does it clarify anything? – Cosmas Zachos Jul 29 '18 at 19:37
  • This explanation is fine. But I still have a puzzlement. While the three pions ($\pi^{-}, \pi^{0}, \pi^{+}$) have an $SU(2)$ symmetry, why do the three quarks ($u, d, s$) have an $SU(3)$ [not $SU(2)$] symmetry? More generally, given three similar particles, how do we know whether they have an $SU(2)$ symmetry or an $SU(3)$ symmetry? – Shen Jul 30 '18 at 17:28
  • @frobenius LPT: instead of typing \boldsymbol{8}^{\boldsymbol{\prime}}\boldsymbol{\oplus}\boldsymbol{8}, you could just type \boldsymbol{8'\oplus8} for the exact same output. Similarly for the rest of your formulas. – AccidentalFourierTransform Jul 30 '18 at 23:57
  • 1
    It's always a pleasure to see posts so well-formatted. – Nat Aug 02 '18 at 12:48
  • @Nat : Thanks, I always try to do the best for format and Figures. – Frobenius Aug 02 '18 at 12:52
  • @Probenius - You said "Under full symmetry (same mass) ... " But the fact is that $u, d, s$ have different masses. Does this mean that their $SU(3)$ symmetry is broken or not exact? But why do we still say they have an $SU(3)$ symmetry? Is this $SU(3)$ symmetry exact or not? – Shen Aug 12 '18 at 19:00
  • @Shen : Precisely. Here $;SU(3);$ is not an exact symmetry. – Frobenius Aug 12 '18 at 19:06
  • @Probenius - For the same reason, is the $SU(2)$ flavor symmetry of ($u, d$) also not exact because $u$ and $d$ have different masses? But in the Lagrangian (or covariant derivative), ($u, d$) is treated as an $SU(2)$ doublet. Is this treatement an approximation? If so, the Lagrangian is not exact but an approximation, right? Furthermore, none of the mulitiplets in the Standard Model has an exact symmetry because all particles in these multiplets have different masses. Is this the case? – Shen Aug 13 '18 at 06:41
  • @Shen : That's right. – Frobenius Aug 13 '18 at 07:45
  • @Probenius - It follows that, in the Lagrangian, if we did not treat ($u, d$) as an $SU(2)$ doublet but treat $u$ and $d$ separately, we would have a more exact Lagrangian, right? Why did we not develop the Lagrangian in this exact way but in an approximate way? Is it because treating ($u, d$) as an $SU(2)$ doublet makes the Lagrangian more compact but at the expense of exactness? – Shen Aug 13 '18 at 08:41
  • @Shen : May be you must post as questions herein. My username is Frobenius not Probenius. – Frobenius Aug 13 '18 at 10:15
  • On my last question I will wait an physics and mathematica explanation like the ones you usually provide. – Sebastiano Dec 27 '19 at 21:48
3

As per urging by @rob, here is the concise answer:

Isospin SU(2) has a doublet representation, (u,d); a triplet representation, the 3 πs; an isoquartet representation, the 4 Δs; and so on... You already know this from angular momentum, since, SU(2) ~ SO(3) is also the group of rotations/angular momentum, except here in isospace, an abstract notional space: The spin doublets, spin 1/2, correspond to isodoublets here, u,d quarks. The spin triplets, spin 1, like 3-vectors, correspond to isotriplets, the pions. The spin quartets, spin 3/2, correspond to the four Δ baryons, etc... All SU(2) irreps are real (in a slightly technical sense... even the spinors).

Now, unlike SU(2), flavor SU(3) has a truly complex representation, a triple (u,d,s); a real octet representation; a complex decuplet, etc...

Now you consider a real triplet of pions, thus a real 3-vector. You know this vector transforms under SO(3) ~ SU(2), just like rotations of real vectors, so the group is the isospin SU(2) as stated.

However, if it were a spinor, instead, a complex triplet, it would have to transform under an SU(3): you could not restrict the number of independent transformations of its components to SO(3), and you'd be stuck with SU(3), eight independent transformation directions.

This is what dictates SU(3) for a complex triplet of quarks, (u,d,s); even though, historically, the logic went backwards: the complex triplet was suggested by the fundamental representation of flavor SU(3), inferred by the real meson octet!

  • In case you were stumped by the complex $\pi^{\pm}\equiv (\pi^1\pm i\pi^2)/\sqrt{2}$, this is just the spherical vector rewriting of the Cartesian components $\pi^1,\pi^2$, so group theoretically the pion is still a real triplet.
Cosmas Zachos
  • 62,595
  • just want to draw your attention to this https://physics.stackexchange.com/questions/96440/quantum-field-theory-and-antiparticles-vs-particles . My vague understanding is that the operators take care of this difference, but searching on google I found somebody answering that the field is spllt into ψ+ and ψ- . It might be good if you answered this. thanks – anna v Sep 12 '18 at 03:51
  • @anna ... i think the answer there is just fine... yes, the particle & antiparticle are encoded in the same field, in different components.... Dirac thought of them as holes, but the QFT interpretation is smoother... QFT books hash it out: different Fourier components of the same field tag the particle vs antiparticle pieces.... – Cosmas Zachos Sep 12 '18 at 08:42
  • Thanks, do you recomment a particular book? . – anna v Sep 12 '18 at 09:14
  • Maybe Peskin & Schroeder, p 29? – Cosmas Zachos Sep 12 '18 at 14:40
2

$\newcommand{\BK}[3]{\left|{#1},{#2}\right\rangle_{#3}} \newcommand{\BKB}[3]{\mathbf{\left|{#1},{#2}\right\rangle_{\boldsymbol{#3}}}} \newcommand{\FR}[2]{{\textstyle \frac{#1}{#2}}} \newcommand{\BoldExp}[2]{{#1}^{\boldsymbol{#2}}} \newcommand{\CMRR}[2] { \begin{bmatrix} #1 \\ #2 \end{bmatrix} } \newcommand{\MM}[4] { \begin{bmatrix} #1 & #2\\ #3 & #4 \end{bmatrix} } \newcommand{\MMM}[9] { \begin{bmatrix} #1 & #2 & #3 \\ #4 & #5 & #6 \\ #7 & #8 & #9 \\ \end{bmatrix} } \newcommand{\CMRRRR}[4] { \begin{bmatrix} #1 \\ #2 \\ #3 \\ #4 \end{bmatrix} } \newcommand{\CMRRR}[3] { \begin{bmatrix} #1 \\ #2 \\ #3 \end{bmatrix} } \newcommand{\RMCC}[2] { \begin{bmatrix} #1 & #2 \end{bmatrix} } \newcommand{\RMCCC}[3] { \begin{bmatrix} #1 & #2 & #3 \end{bmatrix} } \newcommand{\RMCCCC}[4] { \begin{bmatrix} #1 & #2 & #3 & #4 \end{bmatrix} } \newcommand{\OSS}[1] {\overset{\boldsymbol{\sim}}{#1}} \newcommand{\BoldSub}[2]{{#1}_{\boldsymbol{#2}}} \newcommand{\OSB}[1] {\overset{\boldsymbol{-\!\!\!-}}{#1}} $

$\color{blue}{\textbf{Example C :}}$ The quark model of mesons consisting of two quarks (relevant to the question). So, suppose we know the existence of two quarks only: $\boldsymbol{u}$ and $\boldsymbol{d}$. Under full symmetry these are the basic states, let
\begin{equation} \boldsymbol{u}= \begin{bmatrix} \:1\:\vphantom{\dfrac12}\\ \:0\:\vphantom{\dfrac12} \end{bmatrix} \qquad \boldsymbol{d}= \begin{bmatrix} \:0\:\vphantom{\dfrac12}\\ \:1\:\vphantom{\dfrac12} \end{bmatrix} \tag{ed-16}\label{eqed-16} \end{equation} of a 2-dimensional complex Hilbert space of quarks, say $\boldsymbol{\lbrace}\boldsymbol{u},\boldsymbol{d}\boldsymbol{\rbrace}=\mathbf{Q}\equiv \mathbb{C}^{\boldsymbol{2}}$. A quark $\boldsymbol{\xi} \in \mathbf{Q}$ is expressed in terms of these basic states as \begin{equation} \boldsymbol{\xi}=\xi_u\boldsymbol{u}+\xi_d\boldsymbol{d}= \begin{bmatrix} \:\xi_u\:\vphantom{\dfrac12}\\ \:\xi_d\:\vphantom{\dfrac12} \end{bmatrix} \qquad \xi_u,\xi_d \in \mathbb{C} \tag{ed-17}\label{eqed-17} \end{equation} For a quark $\boldsymbol{\zeta} \in \mathbf{Q}$ \begin{equation} \boldsymbol{\zeta}=\zeta_u\boldsymbol{u}+\zeta_d\boldsymbol{d}= \begin{bmatrix} \:\zeta_u\:\vphantom{\dfrac12}\\ \:\zeta_d\:\vphantom{\dfrac12} \end{bmatrix} \tag{ed-18}\label{eqed-18} \end{equation} the respective antiquark $\overline{\boldsymbol{\zeta}}$ is expressed by the complex conjugates of the coordinates \begin{equation} \overline{\boldsymbol{\zeta}}=\overline{\zeta}_u \OSB{\boldsymbol{u}}+\overline{\zeta}_d\overline{\boldsymbol{d}}= \begin{bmatrix} \:\overline{\zeta}_u\:\vphantom{\dfrac12}\\ \:\overline{\zeta}_d\:\vphantom{\dfrac12}\\ \end{bmatrix} \tag{ed-19}\label{eqed-19} \end{equation} with respect to the basic states
\begin{equation} \OSB{\boldsymbol{u}}= \begin{bmatrix} \:1\:\vphantom{\dfrac12}\\ \:0\:\vphantom{\dfrac12} \end{bmatrix} \qquad \overline{\boldsymbol{d}}= \begin{bmatrix} \:0\:\vphantom{\dfrac12}\\ \:1\:\vphantom{\dfrac12} \end{bmatrix} \tag{ed-20}\label{eqed-20} \end{equation} the antiquarks of $\boldsymbol{u},\boldsymbol{d}$ respectively. The antiquarks belong to a different space, the space of antiquarks $\boldsymbol{\lbrace}\OSB{\boldsymbol{u}},\overline{\boldsymbol{d}}\boldsymbol{\rbrace}=\overline{\mathbf{Q}}\equiv \mathbb{C}^{\boldsymbol{2}}$.

Since mesons here are quark-antiquark pairs, they belong to the product space \begin{equation} \mathbf{M}=\mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\: \left(\equiv \mathbb{C}^{\boldsymbol{4}}\right) \tag{ed-21}\label{eqed-21} \end{equation} Using the expressions \eqref{eqed-17} and \eqref{eqed-19} of the quark $\boldsymbol{\xi} \in \mathbf{Q}$ and the antiquark $\overline{\boldsymbol{\zeta}} \in \overline{\mathbf{Q}}$ respectively we have for the product meson state $ \mathrm{X} \in \mathbf{M}$

\begin{equation} \mathrm{X}=\boldsymbol{\xi}\boldsymbol{\otimes}\overline{\boldsymbol{\zeta}}=\xi_u\overline{\eta}_u \left(\boldsymbol{u}\boldsymbol{\otimes}\OSB{\boldsymbol{u}}\right)+\xi_u\overline{\zeta}_d \left( \boldsymbol{u}\boldsymbol{\otimes}\overline{\boldsymbol{d}}\right)+\xi_d\overline{\zeta}_u\left( \boldsymbol{d}\boldsymbol{\otimes}\OSB{\boldsymbol{u}}\right)+\xi_d\overline{\zeta}_d\left( \boldsymbol{d}\boldsymbol{\otimes}\overline{\boldsymbol{d}}\right) \nonumber \tag{ed-22}\label{eqed-22} \end{equation} In order to simplify the expressions, the product symbol $"\boldsymbol{\otimes}"$ is omitted and so \begin{equation} \mathrm{X}=\boldsymbol{\xi}\overline{\boldsymbol{\zeta}}=\xi_u\overline{\zeta}_u \boldsymbol{u}\OSB{\boldsymbol{u}}+\xi_u\overline{\zeta}_d \boldsymbol{u}\overline{\boldsymbol{d}}+\xi_d\overline{\zeta}_u \boldsymbol{d}\OSB{\boldsymbol{u}}+\xi_d\overline{\zeta}_d \boldsymbol{d}\overline{\boldsymbol{d}} \tag{ed-23}\label{eqed-23} \end{equation} or in one column matrix form \begin{equation} \mathrm{X}= \begin{bmatrix} \begin{array}{rrrr} \xi_u\overline{\zeta}_u\vphantom{\dfrac12}\\ \xi_u\overline{\zeta}_d\vphantom{\dfrac12}\\ \xi_d\overline{\zeta}_u\vphantom{\dfrac12}\\ \xi_d\overline{\zeta}_d\vphantom{\dfrac12} \end{array} \end{bmatrix}_{\mathbf{e}} \tag{ed-24}\label{eqed-24} \end{equation} This representation is with respect to the basis
\begin{equation} \boldsymbol{e_1}=\boldsymbol{u}\OSB{\boldsymbol{u}}= \begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{bmatrix}\,, \quad \boldsymbol{e_2}=\boldsymbol{u}\overline{\boldsymbol{d}}= \begin{bmatrix} 0\\ 1\\ 0\\ 0 \end{bmatrix}\,, \quad \boldsymbol{e_3}=\boldsymbol{d}\OSB{\boldsymbol{u}}= \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix}\,, \quad \boldsymbol{e_4}=\boldsymbol{d}\overline{\boldsymbol{d}}= \begin{bmatrix} 0\\ 0\\ 0\\ 1 \end{bmatrix} \tag{ed-25}\label{eqed-25} \end{equation} The final result of a full analysis is \begin{equation} \boldsymbol{2}\boldsymbol{\otimes} \OSB{\boldsymbol{2}} \boldsymbol{=}\boldsymbol{1}\boldsymbol{\oplus}\boldsymbol{3} \tag{ed-26}\label{eqed-26} \end{equation} that is the space of states of a meson is the direct sum of a singlet $\;\boldsymbol{1}\equiv\boldsymbol{\lbrace}\boldsymbol{\omega}\boldsymbol{\rbrace}$ and a triplet $\;\boldsymbol{3}\equiv\boldsymbol{\lbrace}\BoldExp{\boldsymbol{\pi}}{-},\BoldExp{\boldsymbol{\pi}}{0},\BoldExp{\boldsymbol{\pi}}{+}\boldsymbol{\rbrace}$.

Now, if we apply a $\;SU(2)\;$ transformation in the space $\;\boldsymbol{2}=\boldsymbol{\lbrace}\boldsymbol{u},\boldsymbol{d}\boldsymbol{\rbrace}=\mathbf{Q}$ represented with respect to the basis \eqref{eqed-16} of this space by the matrix \begin{equation} ^{\boldsymbol{2}}U \equiv \begin{bmatrix} \:\:\:g\hphantom{\boldsymbol{-}}\vphantom{\dfrac12} & h \vphantom{\dfrac12}\:\:\:\\ \!\!\!\!\!\boldsymbol{-}\overline{h} & \OSB{g}\vphantom{\dfrac12}\:\: \end{bmatrix}_{\mathbf{ud}}\;, \qquad g\OSB{g}+h\overline{h}=\vert g \vert ^{2} + \vert h \vert ^{2} = 1 \tag{ed-27}\label{eqed-27} \end{equation} then we must apply in the space $ \OSB{\boldsymbol{2}}=\boldsymbol{\lbrace}\OSB{\boldsymbol{u}},\overline{\boldsymbol{d}}\boldsymbol{\rbrace}=\overline{\mathbf{Q}}\equiv \mathbb{C}^{\boldsymbol{2}}$ its complex conjugate represented with respect to the basis \eqref{eqed-20} of this space by the matrix \begin{equation} ^{\boldsymbol{2}}\OSB{U} \equiv \begin{bmatrix} \:\:\:\OSB{g}\hphantom{\boldsymbol{-}}\vphantom{\dfrac12} & \overline{h} \vphantom{\dfrac12}\:\:\:\\ \!\!\!\!\!\boldsymbol{-}h & g\vphantom{\dfrac12}\:\: \end{bmatrix}_{\mathbf{\OSB{\boldsymbol{u}}\overline{\boldsymbol{d}}}} \tag{ed-28}\label{eqed-28} \end{equation}
In the composite system $\;\boldsymbol{2}\boldsymbol{\otimes} \OSB{\boldsymbol{2}}=\mathbf{Q}\boldsymbol{\otimes}\overline{\mathbf{Q}}\;$ this is a $\;SU(4)\;$ transformation, the product of these transformations above, represented with respect to the basis \eqref{eqed-25} of this space by the matrix \begin{equation} ^{\boldsymbol{4}}U=\left(^{\boldsymbol{2}}U\vphantom{^{\boldsymbol{2}}\OSB{U}}\right)\boldsymbol{\otimes}\left(^{\boldsymbol{2}}\OSB{U}\right) = \begin{bmatrix} \:\:\:g\hphantom{\boldsymbol{-}}\vphantom{\dfrac12} & h \vphantom{\dfrac12}\:\:\:\\ \!\!\!\!\!\boldsymbol{-}\overline{h} & \OSB{g}\vphantom{\dfrac12}\:\: \end{bmatrix} \boldsymbol{\otimes} \begin{bmatrix} \:\:\:\OSB{g}\hphantom{\boldsymbol{-}}\vphantom{\dfrac12} & \overline{h} \vphantom{\dfrac12}\:\:\:\\ \!\!\!\!\!\boldsymbol{-}h & g\vphantom{\dfrac12}\:\: \end{bmatrix} = \begin{bmatrix} \:g\OSB{g} & \:\:g\overline{h} & \:h\OSB{g} & \!\!\!h\overline{h} \\ \boldsymbol{-}gh & \hphantom{\boldsymbol{-}}g^{2} & \boldsymbol{-}h^{2} & hg\\ \boldsymbol{-}\overline{h}\OSB{g} & \,\boldsymbol{-}\overline{h}^{2} & \hphantom{\boldsymbol{-}}\OSB{g}^{2} & \OSB{g}\overline{h} \\ \hphantom{\boldsymbol{-}}\overline{h}h & \:\:\boldsymbol{-}\overline{h}g & \:-\OSB{g}h & \:\OSB{g}g \end{bmatrix}_{\bf e} \tag{ed-29}\label{eqed-29} \end{equation} We change from the old basis $\;\boldsymbol{\lbrace e_k\rbrace}$, see equation \eqref{eqed-25}, to this new one

\begin{align} \OSS{\boldsymbol{e}}_{\bf 1} & =\sqrt{\tfrac{1}{2}}\left(\boldsymbol{e_1}+\boldsymbol{e_4} \right) = \sqrt{\tfrac{1}{2}}\left(\boldsymbol{u}\OSB{\boldsymbol{u}}+\boldsymbol{d}\overline{\boldsymbol{d}} \right)=\boldsymbol{\omega} \tag{ed-30.1}\label{eqed-30.1}\\ \OSS{\boldsymbol{e}}_{\bf 2} & =\boldsymbol{e_2} =\boldsymbol{u}\overline{\boldsymbol{d}} =\BoldExp{\boldsymbol{\pi}}{+} \tag{ed-30.2}\label{eqed-30.2}\\ \OSS{\boldsymbol{e}}_{\bf 3} & =\sqrt{\tfrac{1}{2}}\left(\boldsymbol{e_1}-\boldsymbol{e_4} \right)=\BoldExp{\boldsymbol{\pi}}{0} \tag{ed-30.3}\label{eqed-30.3}\\ \OSS{\boldsymbol{e}}_{\bf 4} & =\boldsymbol{e_3} =\boldsymbol{d}\OSB{\boldsymbol{u}} =\BoldExp{\boldsymbol{\pi}}{-} \tag{ed-30.4}\label{eqed-30.4} \end{align} Formally \begin{equation} \begin{bmatrix} \OSS{\boldsymbol{e}}_{\bf 1}\vphantom{\sqrt{\tfrac{1}{2}}}\\ \OSS{\boldsymbol{e}}_{\bf 2}\vphantom{\sqrt{\tfrac{1}{2}}} \\ \OSS{\boldsymbol{e}}_{\bf 3}\vphantom{\sqrt{\tfrac{1}{2}}} \\ \OSS{\boldsymbol{e}}_{\bf 4}\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} = \begin{bmatrix} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 &\hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}\sqrt{\tfrac{1}{2}}\\ 0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}}\\ \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}0 & -\sqrt{\tfrac{1}{2}}\\ 0 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} \begin{bmatrix} \boldsymbol{e_1}\vphantom{\sqrt{\tfrac{1}{2}}}\\ \boldsymbol{e_2}\vphantom{\sqrt{\tfrac{1}{2}}}\\ \boldsymbol{e_3}\vphantom{\sqrt{\tfrac{1}{2}}}\\ \boldsymbol{e_4}\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} =\mathrm{K} \begin{bmatrix} \boldsymbol{e_1}\vphantom{\sqrt{\tfrac{1}{2}}}\\ \boldsymbol{e_2}\vphantom{\sqrt{\tfrac{1}{2}}}\\ \boldsymbol{e_3}\vphantom{\sqrt{\tfrac{1}{2}}}\\ \boldsymbol{e_4}\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} \tag{ed-31}\label{eqed-31} \end{equation} where $\;\mathrm{K}\;$ the following $\;4\times 4\;$ real orthogonal matrix \begin{equation} \mathrm{K} = \begin{bmatrix} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 &\hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}\sqrt{\tfrac{1}{2}}\\ 0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}}\\ \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}\sqrt{\tfrac{1}{2}}\\ 0 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} \tag{ed-32}\label{eqed-32} \end{equation} with property \begin{equation} \mathrm{K}^{\boldsymbol{-1}} = \begin{bmatrix} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 &\hphantom{\boldsymbol{-}} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0\\ 0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}}\\ 0 & \hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}1\vphantom{\sqrt{\tfrac{1}{2}}}\\ \sqrt{\tfrac{1}{2}}& \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}\sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 \end{bmatrix} =\mathrm{K}^{\boldsymbol{\top}} \tag{ed-33}\label{eqed-33} \end{equation} The matrix $\;^{\boldsymbol{4}}U$, see equation \eqref{eqed-29}, representing the $\;SU(4)\;$ transformation with respect to the basis $\;\boldsymbol{\lbrace \boldsymbol{e}_k\rbrace}$ has with respect to the new basis $\;\boldsymbol{\lbrace \OSS{\boldsymbol{e}}_k\rbrace}$, see equations \eqref{eqed-30.1}-\eqref{eqed-30.4}, the following form \begin{align} & ^{\boldsymbol{4}}\OSS{U}=\mathrm{K}\left(^{\boldsymbol{4}}U\right)\mathrm{K}^{\boldsymbol{-1}} \nonumber\\ & = \begin{bmatrix} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 &\hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}\sqrt{\tfrac{1}{2}}\\ 0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}}\\ \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}\sqrt{\tfrac{1}{2}}\\ 0 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} \begin{bmatrix} \:g\OSB{g} & \:\:g\overline{h} & \:h\OSB{g} & \!\!\!h\overline{h}\vphantom{\sqrt{\tfrac{1}{2}}} \\ \boldsymbol{-}gh & \hphantom{\boldsymbol{-}}g^{2} & \boldsymbol{-}h^{2} & hg\vphantom{\sqrt{\tfrac{1}{2}}}\\ \boldsymbol{-}\overline{h}\OSB{g} & \,\boldsymbol{-}\overline{h}^{2} & \hphantom{\boldsymbol{-}}\OSB{g}^{2} & \OSB{g}\overline{h}\vphantom{\sqrt{\tfrac{1}{2}}} \\ \hphantom{\boldsymbol{-}}\overline{h}h & \:\:\boldsymbol{-}\overline{h}g & \:-\OSB{g}h & \:\OSB{g}g\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} \begin{bmatrix} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 &\hphantom{\boldsymbol{-}} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0\\ 0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}}\\ 0 & \hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}1\vphantom{\sqrt{\tfrac{1}{2}}}\\ \sqrt{\tfrac{1}{2}}& \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}\sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 \end{bmatrix} \nonumber\\ & = \begin{bmatrix} \sqrt{\tfrac{1}{2}} & 0 & 0 & \sqrt{\tfrac{1}{2}} \\ \boldsymbol{-}gh & \hphantom{\boldsymbol{-}}g^{2} & \boldsymbol{-}h^{2} & hg\vphantom{\sqrt{\tfrac{1}{2}}}\\ \sqrt{\tfrac{1}{2}}\left(g\OSB{g}\boldsymbol{-}\overline{h}h\right) & \sqrt{2}g\overline{h} & \sqrt{2}\OSB{g}h & \sqrt{\tfrac{1}{2}}\left(\overline{h}h\boldsymbol{-}g\OSB{g}\right) \\ \boldsymbol{-}\overline{h}\OSB{g} & \,\boldsymbol{-}\overline{h}^{2} & \hphantom{\boldsymbol{-}}\OSB{g}^{2} & \OSB{g}\overline{h}\vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix} \begin{bmatrix} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 &\hphantom{\boldsymbol{-}} \sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0\\ 0 & \hphantom{\boldsymbol{-}}1 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}0\vphantom{\sqrt{\tfrac{1}{2}}}\\ 0 & \hphantom{\boldsymbol{-}} 0 & \hphantom{\boldsymbol{-}}0 & \hphantom{\boldsymbol{-}}1\vphantom{\sqrt{\tfrac{1}{2}}}\\ \sqrt{\tfrac{1}{2}}& \hphantom{\boldsymbol{-}}0 & \boldsymbol{-}\sqrt{\tfrac{1}{2}} & \hphantom{\boldsymbol{-}}0 \end{bmatrix} \nonumber\\ & = \begin{bmatrix} 1 & 0 & 0 & 0 \vphantom{\sqrt{\tfrac{1}{2}}}\\ 0 & g^{2} & \boldsymbol{-}\sqrt{2}gh &\boldsymbol{-}h^{2}\vphantom{\sqrt{\tfrac{1}{2}}}\\ 0 & \sqrt{2}g\overline{h} & \left(g\OSB{g}\boldsymbol{-}h\overline{h}\right) & \sqrt{2}\OSB{g}h \\ 0 & \,\boldsymbol{-}\overline{h}^{2} & \boldsymbol{-}\sqrt{2}\OSB{g}\overline{h} & \OSB{g}^{2} \vphantom{\sqrt{\tfrac{1}{2}}} \end{bmatrix}_{\OSS{\boldsymbol{e}}} \tag{ed-34}\label{eqed-34} \end{align} so \begin{equation} ^{\bf 4}\OSS{U}= \begin{bmatrix} \begin{array}{c|ccc} \:\: 1 \:\: &\rule [0ex]{20pt}{0.0ex}&\rule [-2.5ex]{0pt}{6.0ex} \rule [0ex]{16pt}{0ex}& \rule [0ex]{16pt}{0ex}\\ \hline \rule [-3ex]{0pt}{6ex}&g^{2} & \boldsymbol{-}\sqrt{2}gh &\boldsymbol{-}h^{2} \\ \rule [-3ex]{0pt}{6ex}& \sqrt{2}g\overline{h} & \left(g\OSB{g}\boldsymbol{-}h\overline{h}\right) & \sqrt{2}\OSB{g}h \\ \rule [-3ex]{0pt}{6ex}& \boldsymbol{-}\overline{h}^{2} & \boldsymbol{-}\sqrt{2}\OSB{g}\overline{h} & \OSB{g}^{2} \end{array} \end{bmatrix}_{\OSS{\boldsymbol{e}}} = \begin{bmatrix} \begin{array}{c|ccc} ^{\mathbf{1}}U_{\boldsymbol{\left[1\right]}}&\rule [0ex]{20pt}{0.0ex}&\rule [-2.5ex]{0pt}{6.0ex} \rule [0ex]{16pt}{0ex}& \rule [0ex]{16pt}{0ex}\\ \hline \rule [-3ex]{0pt}{6ex}&\rule [0.0ex]{50pt}{0.0ex}& \rule [0.0ex]{50pt}{0.0ex} &\rule [0.0ex]{50pt}{0.0ex}\\ \rule [-3ex]{0pt}{6ex}& & ^{\mathbf{3}}U_{\boldsymbol{\left[2\right]}} & \\ \rule [-3ex]{0pt}{6ex}& & & \end{array} \end{bmatrix}_{\OSS{\boldsymbol{e}}} \tag{ed-35}\label{eqed-35} \end{equation} where $\:^{\mathbf{1}}U_{\boldsymbol{\left[1\right]}}\:$ and $\:^{\mathbf{3}}U_{\boldsymbol{\left[2\right]}}\:$ are special unitary matrices in the spaces of the singlet $\;\boldsymbol{1}\equiv\boldsymbol{\lbrace}\boldsymbol{\omega}\boldsymbol{\rbrace}$ and of the triplet $\;\boldsymbol{3}\equiv\boldsymbol{\lbrace}\BoldExp{\boldsymbol{\pi}}{-},\BoldExp{\boldsymbol{\pi}}{0},\BoldExp{\boldsymbol{\pi}}{+}\boldsymbol{\rbrace}$ respectively given by \begin{equation} ^{\mathbf{1}}U_{\boldsymbol{\left[1\right]}}= \begin{bmatrix} 1 \end{bmatrix} \quad \in SU(1)\equiv \{1\} \tag{ed-36}\label{eqed-36} \end{equation}

\begin{equation} ^{\mathbf{3}}U_{\boldsymbol{\left[2\right]}}= \begin{bmatrix} g^{2} & \boldsymbol{-}\sqrt{2}gh &\boldsymbol{-}h^{2}\vphantom{\sqrt{\dfrac{1}{2}}}\\ \sqrt{2}g\overline{h} & \left(g\OSB{g}\boldsymbol{-}h\overline{h}\right) & \sqrt{2}\OSB{g}h\vphantom{\sqrt{\dfrac{1}{2}}} \\ \boldsymbol{-}\overline{h}^{2} & \boldsymbol{-}\sqrt{2}\OSB{g}\overline{h} & \OSB{g}^{2} \vphantom{\sqrt{\dfrac{1}{2}}} \end{bmatrix} \quad \in SU(3) \tag{ed-37}\label{eqed-37} \end{equation} results in all respects similar to those in $\color{blue}{\textbf{Example A }}$, see equations (ed-06), (ed-07) and (ed-08).

Again : We say that the symmetry group is $\;SU(2)$, NOT $\;SU(1)\;$ or $\;SU(3)\;$ of the resulting multiplets.

Frobenius
  • 15,613