In Relativity the Lagrangian of a free particle is \begin{align} \mathcal L=\sqrt{g_{ab}\frac{dx^a}{d\tau}\frac{dx^b}{d\tau}}\end{align} Since $\mathcal L$ is parameterization invariant we can always set $$\mathcal L=1.$$ In that case how can the Euler-Lagrange equation
\begin{align} \frac{\mathrm{d}}{\mathrm{d}\tau}\left(\frac{\partial L}{\partial \dot{x}^\mu}\right) - \frac{\partial L}{\partial x^\mu} &=0 \end{align} make sense? How can $\frac{\partial \mathcal L}{\partial \dot{x}^\mu}$ and $\frac{\partial \mathcal L}{\partial {x}^\mu}$ not be zero?