On my mechanics classes I have a problem: show, that the action for free non-relativistic particle $$S=\int\limits_{t_i}^{t_f}\frac{m\dot{x}^2}{2}dt\tag{1}$$ is really the least (but not maximal).
What I do: $$S=\int\limits_{t_i}^{t_f}\frac{m\dot{x}^2}{2}dt=\frac{mV^2}{2}\int_{t_i}^{t_f}dt=\frac{mV^2}{2}(t_f-t_i).\tag{2}$$ Then $\dot{S}=\frac{mV^2}{2}$ and $\ddot{S}=0$. And for minimality it must be $>0$, but it is just zero. I am confused.