The general velocity equation for a point B in on body rotating and translating about point A with respect to the inertial reference frame say 'xyzo' can be expressed as,
$\vec{r_{B/o}} = \vec{r_{A/o}} + \vec{r_{B/A}}$
differentiating the above equation with respect to time
$\vec{v_{B/o}} = \vec{v_{A/o}} + \big(\vec{v_{B/A}}\big)_{\omega = 0} + \omega_{/o} \times \vec{r_{B/A}}$
differentiating again we get,
$\vec{a_{B/o}} = \vec{a_{A/o}} + \big(\vec{a_{B/A}}\big)_{\omega = 0} + \dfrac{d(\omega_{/o} \times \vec{r_{B/A}})}{dt}$
$\vec{a_{B/o}} = \vec{a_{A/o}} + \big(\vec{a_{B/A}}\big)_{\omega = 0} + \dfrac{d(\omega_{/o})}{dt} \times \vec{r_{B/A}} + \omega_{/o} \times \dfrac{r_{B/A}}{dt}$
$\vec{a_{B/o}} = \vec{a_{A/o}} + \big(\vec{a_{B/A}}\big)_{\omega = 0} + \dot{\omega_{/o}} \times \vec{r_{B/A}} + \omega_{/o} \times \big({\vec{v_{B/A}}}_{\omega_{/o} = 0} + \omega_{/o} \times r_{B/A}\big)$
which when expanded gives
$\vec{a_{B/o}} = \vec{a_{A/o}} + \big(\vec{a_{B/A}}\big) + {\alpha} \times \vec{r_{B/A}} + \omega_{/o} \times {\vec{v_{B/A}}}_{\omega_{/o} = 0} + \omega_{/o} \times \big(\omega_{/o} \times r_{B/A}\big)$
The general acceleration equation is given by
$\vec{a_{B/o}} = \vec{a_{A/o}} + \big(\vec{a_{B/A}}\big) + {\alpha} \times \vec{r_{B/A}} + 2(\omega_{/o} \times {\vec{v_{B/A}}}_{\omega_{/o} = 0}) + \omega_{/o} \times \big(\omega_{/o} \times r_{B/A}\big)$
where did the $2(\omega_{/o} \times {\vec{v_{B/A}}}_{\omega_{/o} = 0}) + \omega_{/o}$, 2 come from in the above derivation?