\begin{equation}
\mathrm{L}\left(\boldsymbol{\beta}\right) =\mathrm{R}^{\boldsymbol{-1}}\cdot\mathrm{L}_3\left(\alpha_3\right)\cdot\mathrm{L}_2\left(\alpha_2\right)\cdot\mathrm{L}_1\left(\alpha_1\right)
\tag{a}\label{a}
\end{equation}
\begin{equation}
\alpha_1 =\beta_1\,, \quad \alpha_2 =\dfrac{\beta_2}{\sqrt{1-\beta^2_1}}\,, \quad \alpha_3 =\dfrac{\beta_3}{\sqrt{1-\left(\beta^2_1+\beta^2_2\right)}}
\tag{b}\label{b}
\end{equation}
\begin{equation}
\mathrm{R}=\text{space rotation}
\tag{c}\label{c}
\end{equation}
$==================================================$

Figure-01 3D
From Figure 01 :
Lorentz Transformation from $\:\mathrm{S}\boldsymbol{\equiv} \{xyz\omega, \omega\boldsymbol{=}ct\}\:$ to $\:\mathrm{S_1}\boldsymbol{\equiv} \{x_1y_1z_1\omega_1, \omega_1\boldsymbol{=}ct_1\}\:$
\begin{equation}
\begin{bmatrix}
x_1\\
y_1\\
z_1\\
\omega_1
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\hphantom{-}\cosh\!\xi & \hphantom{-}0 & \hphantom{-}0 &-\sinh\!\xi \\
0 & \hphantom{-}1 & \hphantom{-} 0 & 0\\
0 & \hphantom{-} 0 & \hphantom{-} 1 & 0\\
-\sinh\!\xi & \hphantom{-} 0 & \hphantom{-} 0 &\hphantom{-}\cosh\!\xi
\end{bmatrix}
\begin{bmatrix}
x\\
y\\
z\\
\omega
\end{bmatrix}
\,, \quad \tanh\!\xi\boldsymbol{=}\alpha_1\boldsymbol{=}\dfrac{u_1}{c}
\tag{01}\label{01}
\end{equation}
or
\begin{equation}
\mathbf{W}_1\boldsymbol{=}\mathrm{L_1}\mathbf{W}\,, \qquad \mathrm{L_1}\boldsymbol{=}
\begin{bmatrix}
\hphantom{-}\cosh\!\xi & \hphantom{-}0 & \hphantom{-}0 &-\sinh\!\xi \\
0 & \hphantom{-}1 & \hphantom{-} 0 & 0\\
0 & \hphantom{-} 0 & \hphantom{-} 1 & 0\\
-\sinh\!\xi & \hphantom{-} 0 & \hphantom{-} 0 &\hphantom{-}\cosh\!\xi
\end{bmatrix}
\tag{02}\label{02}
\end{equation}
Lorentz Transformation from $\:\mathrm{S_1}\boldsymbol{\equiv} \{x_1y_1z_1\omega_1, \omega_1\boldsymbol{=}ct_1\}\:$ to $\:\mathrm{S_2}\boldsymbol{\equiv} \{x_2y_2z_2\omega_2, \omega_2\boldsymbol{=}ct_2\}\:$
\begin{equation}
\begin{bmatrix}
x_2\\
y_2\\
z_2\\
\omega_2
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
1 & \hphantom{-}0 & \hphantom{-}0 &\hphantom{-}0 \\
0 & \hphantom{-}\cosh\!\eta & \hphantom{-} 0 & -\sinh\!\eta\\
0 & \hphantom{-} 0 & \hphantom{-} 1 & 0\\
0 & -\sinh\!\eta & \hphantom{-} 0 &\hphantom{-}\cosh\!\eta
\end{bmatrix}
\begin{bmatrix}
x_1\\
y_1\\
z_1\\
\omega_1
\end{bmatrix}
\,, \quad \tanh\!\eta\boldsymbol{=}\alpha_2\boldsymbol{=}\dfrac{u_2}{c}
\tag{03}\label{03}
\end{equation}
or
\begin{equation}
\mathbf{W}_2\boldsymbol{=}\mathrm{L_2}\mathbf{W}_1\,, \qquad \mathrm{L_2}\boldsymbol{=}
\begin{bmatrix}
1 & \hphantom{-}0 & \hphantom{-}0 &\hphantom{-}0 \\
0 & \hphantom{-}\cosh\!\eta & \hphantom{-} 0 & -\sinh\!\eta\\
0 & \hphantom{-} 0 & \hphantom{-} 1 & 0\\
0 & -\sinh\!\eta & \hphantom{-} 0 &\hphantom{-}\cosh\!\eta
\end{bmatrix}
\tag{04}\label{04}
\end{equation}
Lorentz Transformation from $\:\mathrm{S_2}\boldsymbol{\equiv} \{x_2y_2z_2\omega_2, \omega_2\boldsymbol{=}ct_2\}\:$ to $\:\mathrm{S_3}\boldsymbol{\equiv}\{x_3y_3z_3\omega_3, \omega_3\boldsymbol{=}ct_3\}\:$
\begin{equation}
\begin{bmatrix}
x_3\\
y_3\\
z_3\\
\omega_3
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
1 & \hphantom{-}0 & \hphantom{-}0 &\hphantom{-}0 \\
0 & \hphantom{-}1 & \hphantom{-} 0 & \hphantom{-}0\\
0 & \hphantom{-}0 & \hphantom{-}\cosh\!\zeta & -\sinh\!\zeta\\
0 & \hphantom{-}0 & -\sinh\!\zeta &\hphantom{-}\cosh\!\zeta
\end{bmatrix}
\begin{bmatrix}
x_2\\
y_2\\
z_2\\
\omega_2
\end{bmatrix}
\,, \quad \tanh\!\zeta\boldsymbol{=}\alpha_3\boldsymbol{=}\dfrac{u_3}{c}
\tag{05}\label{05}
\end{equation}
or
\begin{equation}
\mathbf{W}_3\boldsymbol{=}\mathrm{L_3}\mathbf{W}_2\,, \qquad \mathrm{L_3}\boldsymbol{=}
\begin{bmatrix}
1 & \hphantom{-}0 & \hphantom{-}0 &\hphantom{-}0 \\
0 & \hphantom{-}1 & \hphantom{-} 0 & \hphantom{-}0\\
0 & \hphantom{-}0 & \hphantom{-}\cosh\!\zeta & -\sinh\!\zeta\\
0 & \hphantom{-}0 & -\sinh\!\zeta &\hphantom{-}\cosh\!\zeta
\end{bmatrix}
\tag{06}\label{06}
\end{equation}
Note that because of the Standard Configurations the matrices $\:\mathrm{L_1}, \mathrm{L_2},\mathrm{L_3}\:$ are real symmetric.
From equations \eqref{02},\eqref{04} and \eqref{06} we have
\begin{equation}
\mathbf{W}_3\boldsymbol{=}\mathrm{L}_3\mathbf{W}_2\boldsymbol{=}\mathrm{L}_3\mathrm{L}_2\mathbf{W}_1\boldsymbol{=}\mathrm{L}_3\mathrm{L}_2\mathrm{L}_1\mathbf{W} \quad \boldsymbol{\Longrightarrow} \quad \mathbf{W}_3\boldsymbol{=}\Lambda\,\mathbf{W}
\tag{07}\label{07}
\end{equation}
where $\:\Lambda\:$ the composition of the three Lorentz Transformations $\:\mathrm{L_1}, \mathrm{L_2},\mathrm{L_3}\:$
\begin{align}
&\Lambda\boldsymbol{=}\mathrm{L}_3\mathrm{L}_2\mathrm{L}_1\boldsymbol{=}
\nonumber\\
&\begin{bmatrix}
1 & \hphantom{-}0 & \hphantom{-}0 &\hphantom{-}0 \\
0 & \hphantom{-}1 & \hphantom{-} 0 & \hphantom{-}0\\
0 & \hphantom{-}0 & \hphantom{-}\cosh\!\zeta & -\sinh\!\zeta\\
0 & \hphantom{-}0 & -\sinh\!\zeta &\hphantom{-}\cosh\!\zeta
\end{bmatrix}
\begin{bmatrix}
1 & \hphantom{-}0 & \hphantom{-}0 &\hphantom{-}0 \\
0 & \hphantom{-}\cosh\!\eta & \hphantom{-} 0 & -\sinh\!\eta\\
0 & \hphantom{-} 0 & \hphantom{-} 1 & 0\\
0 & -\sinh\!\eta & \hphantom{-} 0 &\hphantom{-}\cosh\!\eta
\end{bmatrix}
\begin{bmatrix}
\hphantom{-}\cosh\!\xi & \hphantom{-}0 & \hphantom{-}0 &-\sinh\!\xi \\
0 & \hphantom{-}1 & \hphantom{-} 0 & 0\\
0 & \hphantom{-} 0 & \hphantom{-} 1 & 0\\
-\sinh\!\xi & \hphantom{-} 0 & \hphantom{-} 0 &\hphantom{-}\cosh\!\xi
\end{bmatrix}
\tag{08}\label{08}
\end{align}
that is
\begin{equation}
\Lambda\boldsymbol{=}\mathrm{L}_3\mathrm{L}_2\mathrm{L}_1\boldsymbol{=}
\begin{bmatrix}
\hphantom{-}\cosh\!\xi & \hphantom{-}0 & \hphantom{-}0 &-\sinh\!\xi\\
\hphantom{-}\sinh\!\eta\sinh\!\xi & \hphantom{-}\cosh\!\eta & \hphantom{-}0 & -\sinh\!\eta\cosh\!\xi\\
\hphantom{-}\sinh\!\zeta\cosh\!\eta\sinh\!\xi & \hphantom{-}\sinh\!\zeta\sinh\!\eta &\hphantom{-} \cosh\!\zeta & -\sinh\!\zeta\cosh\!\eta\cosh\!\xi\\
-\cosh\!\zeta\cosh\!\eta\sinh\!\xi & -\cosh\!\zeta\sinh\!\eta & -\sinh\!\zeta &\hphantom{-}\cosh\!\zeta\cosh\!\eta\cosh\!\xi
\end{bmatrix}
\tag{09}\label{09}
\end{equation}
The Lorentz Transformation matrix $\:\Lambda\:$ is not symmetric, so the systems $\:\mathrm{S},\mathrm{S_3}\:$ are not in the Standard configuration. But it's reasonable to suppose that
\begin{equation}
\Lambda=\mathrm{R}\cdot\mathrm{L}
\tag{10}\label{10}
\end{equation}
where $\:\mathrm{L}\:$ is the symmetric Lorentz Transformation matrix from $\:\mathrm{S}\:$ to an intermediate system $\:\mathrm{S'}_3\:$ in Standard configuration to it and co-moving with $\:\mathrm{S}_3\:$, while $\:\mathrm{R}\:$ is a purely spatial transformation between $\:\mathrm{S'}_3\:$ and $\:\mathrm{S}_3$.
Now, our target would be to express the symmetric Lorentz Transformation matrix $\:\mathrm{L}\:$ in terms of the rapidities $\:\xi,\eta,\zeta\:$ since from \eqref{10}
\begin{equation}
\mathrm{R}\boldsymbol{=}\Lambda\cdot\mathrm{L}^{\boldsymbol{-1}}
\tag{11}\label{11}
\end{equation}
The Lorentz Transformation matrix $\:\mathrm{L}\:$, from $\:\mathrm{S}\:$ to the intermediate system $\:\mathrm{S'_3}\:$ in Standard Configuration to it, is :
\begin{equation}
\mathrm{L}\left(\boldsymbol{\upsilon} \right)\boldsymbol{=}
\begin{bmatrix}
1\!+\!\left(\gamma\!-\!1\right)\!\mathrm{n}^{2}_{x} & \left(\gamma\!-\!1\right)\!\mathrm{n}_{x}\mathrm{n}_{y} & \left(\gamma\!-\!1\right)\!\mathrm{n}_{x}\mathrm{n}_{z} & \!-\dfrac{\gamma\upsilon_{x}}{c} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\left(\gamma\!-\!1\right)\!\mathrm{n}_{y}\mathrm{n}_{x} & 1\!+\!\left(\gamma\!-\!1\right)\!\mathrm{n}^{2}_{y} &\left(\gamma\!-\!1\right)\!\mathrm{n}_{y}\mathrm{n}_{z} & \!-\dfrac{\gamma\upsilon_{y}}{c} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\left(\gamma\!-\!1\right)\!\mathrm{n}_{z}\mathrm{n}_{x} & \left(\gamma\!-\!1\right)\!\mathrm{n}_{z}\mathrm{n}_{y} & 1\!+\!\left(\gamma\!-\!1\right)\!\mathrm{n}^{2}_{z} & \!-\dfrac{\gamma\upsilon_{z}}{c} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\!-\dfrac{\gamma\upsilon_{x}}{c} & \!-\dfrac{\gamma\upsilon_{y}}{c} &\!-\dfrac{\gamma\upsilon_{z}}{c} & \gamma \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}
\end{bmatrix}
\tag{12}\label{12}
\end{equation}
In \eqref{12}
\begin{align}
\dfrac{\boldsymbol{\upsilon}}{c} & \boldsymbol{=} \left(\dfrac{\upsilon_{x}}{c},\dfrac{\upsilon_{y}}{c},\dfrac{\upsilon_{z}}{c}\right)\boldsymbol{=}\left(\tanh\!\xi,\dfrac{\tanh\!\eta}{\cosh\!\xi},\dfrac{\tanh\!\zeta}{\cosh\!\xi\cosh\!\eta}\right)\equiv \boldsymbol{\beta}\boldsymbol{=} \left(\beta_1,\beta_2,\beta_3,\right)
\tag{13.1}\label{13.1}\\
\left(\dfrac{\upsilon}{c}\right)^{2} & \boldsymbol{=} \left(\dfrac{\upsilon_{x}}{c}\right)^{2}+\left(\dfrac{\upsilon_{y}}{c}\right)^{2}+\left(\dfrac{\upsilon_{z}}{c}\right)^{2} \boldsymbol{=}1 \boldsymbol{-}\left(\dfrac{1}{\cosh\!\xi\cosh\!\eta\cosh\!\zeta}\right)^{2}=\dfrac{\gamma^{2}\!-\!1}{\gamma^{2}}
\tag{13.2}\label{13.2}\\
\gamma & \boldsymbol{=} \left(\!1\!-\!\frac{\upsilon^{2}}{c^{2}}\right)^{-\frac12}\boldsymbol{=}
\cosh\!\xi\cosh\!\eta\cosh\!\zeta \boldsymbol{=}\gamma_1\gamma_2\gamma_3
\tag{13.3}\label{13.3}\\
\mathbf{n} & = \left(\mathrm{n}_{x},\mathrm{n}_{y},\mathrm{n}_{z}\right) \boldsymbol{=}\dfrac{\boldsymbol{\upsilon}/c}{\upsilon/c}\boldsymbol{=}\dfrac{\left(\sinh\!\xi\cosh\!\eta\cosh\!\zeta ,\sinh\!\eta\cosh\!\zeta,\sinh\!\zeta\right)}{\sqrt{\cosh^2\!\xi\cosh^2\!\eta\cosh^2\!\zeta-1}}
\tag{13.4}\label{13.4}
\end{align}
where $\:\boldsymbol{\upsilon}\:$ is the velocity vector of the origin $\:\mathrm{O'}_{\!\!3}\left(\equiv \mathrm{O}_{3}\right)\:$ with respect to $\:\mathrm{S}$(1), $\:\mathbf{n}\:$ the unit vector along $\:\boldsymbol{\upsilon}\:$ and $\:\gamma\:$ the corresponding $\:\gamma-$factor.
So the matrix $\:\mathrm{L}\left(\boldsymbol{\upsilon} \right)\:$ of equation \eqref{12} as function of the rapidities $\:\xi,\eta,\zeta\:$ is(2)
\begin{align}
&\mathrm{L}\left(\boldsymbol{\upsilon} \right)\boldsymbol{=}\mathrm{L}\left(\xi,\eta,\zeta \right)\boldsymbol{=}
\nonumber\\
&\begin{bmatrix}
1\!+\!\dfrac{\sinh^{2}\!\xi\cosh^2\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} &\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\xi\cosh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \!\boldsymbol{-} \sinh\!\xi\cosh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 1\!+\!\dfrac{\sinh^2\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta } &\dfrac{\sinh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \!\boldsymbol{-} \sinh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 1\!+\!\dfrac{\sinh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta } & \!\boldsymbol{-}\sinh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\!\boldsymbol{-}\sinh\!\xi\cosh\!\eta\cosh\!\zeta & \!\boldsymbol{-}\sinh\!\eta\cosh\!\zeta &\!\boldsymbol{-}\sinh\!\zeta & \cosh\!\xi\cosh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}
\end{bmatrix}
\tag{14}\label{14}
\end{align}
while
\begin{align}
&\mathrm{L}^{\boldsymbol{-1}}\left(\boldsymbol{\upsilon} \right)\boldsymbol{=}\mathrm{L}\left(\boldsymbol{-}\boldsymbol{\upsilon} \right)\boldsymbol{=}\mathrm{L}\left(\boldsymbol{-}\xi,\boldsymbol{-}\eta,\boldsymbol{-}\zeta \right)\boldsymbol{=}
\nonumber\\
&\begin{bmatrix}
1\!+\!\dfrac{\sinh^{2}\!\xi\cosh^2\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} &\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\xi\cosh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \! \sinh\!\xi\cosh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 1\!+\!\dfrac{\sinh^2\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta } &\dfrac{\sinh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \! \sinh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 1\!+\!\dfrac{\sinh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta } & \!\sinh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\!\sinh\!\xi\cosh\!\eta\cosh\!\zeta & \!\sinh\!\eta\cosh\!\zeta &\!\sinh\!\zeta & \cosh\!\xi\cosh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}
\end{bmatrix}
\tag{15}\label{15}
\end{align}
From equations \eqref{09},\eqref{11} and \eqref{15}
\begin{align}
&\mathrm{R}\boldsymbol{=}\Lambda\cdot\mathrm{L}^{\boldsymbol{-1}}\boldsymbol{=}
\nonumber\\
&\begin{bmatrix}
\hphantom{-}\cosh\!\xi & \hphantom{-}0 & \hphantom{-}0 &-\sinh\!\xi\vphantom{\dfrac{a}{b}}\\
\hphantom{-}\sinh\!\eta\sinh\!\xi & \hphantom{-}\cosh\!\eta & \hphantom{-}0 & -\sinh\!\eta\cosh\!\xi\vphantom{\dfrac{a}{b}}\\
\hphantom{-}\sinh\!\zeta\cosh\!\eta\sinh\!\xi & \hphantom{-}\sinh\!\zeta\sinh\!\eta &\hphantom{-} \cosh\!\zeta & -\sinh\!\zeta\cosh\!\eta\cosh\!\xi\vphantom{\dfrac{a}{b}}\\
-\cosh\!\zeta\cosh\!\eta\sinh\!\xi & -\cosh\!\zeta\sinh\!\eta & -\sinh\!\zeta &\hphantom{-}\cosh\!\zeta\cosh\!\eta\cosh\!\xi\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\nonumber\\
&\begin{bmatrix}
1\!+\!\dfrac{\sinh^{2}\!\xi\cosh^2\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} &\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\xi\cosh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \! \sinh\!\xi\cosh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 1\!+\!\dfrac{\sinh^2\!\eta\cosh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta } &\dfrac{\sinh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \! \sinh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\eta\cosh\!\zeta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 1\!+\!\dfrac{\sinh^2\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta } & \!\sinh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\!\sinh\!\xi\cosh\!\eta\cosh\!\zeta & \!\sinh\!\eta\cosh\!\zeta &\!\sinh\!\zeta & \cosh\!\xi\cosh\!\eta\cosh\!\zeta \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}
\end{bmatrix}\boldsymbol{=}
\nonumber\\
&\begin{bmatrix}
\dfrac{\cosh\!\xi\!+\!\cosh\!\eta\cosh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \boldsymbol{-}\dfrac{\sinh\!\xi\sinh\!\eta\cosh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \boldsymbol{-}\dfrac{\sinh\!\xi\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 0 \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\sinh\!\eta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\eta} & \hphantom{\boldsymbol{-}}\dfrac{\cosh\!\eta\!+\!\cosh\!\zeta\cosh\!\xi}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \boldsymbol{-}\dfrac{\cosh\!\xi\sinh\!\eta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 0 \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\eta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\eta} & \dfrac{\cosh\!\zeta\!+\!\cosh\!\xi\cosh\!\eta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & 0 \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
0 & 0 & 0 & 1 \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}
\end{bmatrix}
\tag{16}\label{16}
\end{align}
\begin{equation}
\mathcal R=
\begin{bmatrix}
\dfrac{\cosh\!\xi\!+\!\cosh\!\eta\cosh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \boldsymbol{-}\dfrac{\sinh\!\xi\sinh\!\eta\cosh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \boldsymbol{-}\dfrac{\sinh\!\xi\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\sinh\!\eta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\eta} & \hphantom{\boldsymbol{-}}\dfrac{\cosh\!\eta\!+\!\cosh\!\zeta\cosh\!\xi}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \boldsymbol{-}\dfrac{\cosh\!\xi\sinh\!\eta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
\dfrac{\sinh\!\xi\cosh\!\eta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} & \dfrac{\sinh\!\eta\sinh\!\zeta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\eta} & \dfrac{\cosh\!\zeta\!+\!\cosh\!\xi\cosh\!\eta}{1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta} \vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}
\end{bmatrix}
\tag{17}\label{17}
\end{equation}
\begin{equation}
\mathcal R=
\begin{bmatrix}
\cos\theta+(1-\cos\theta)\mathrm{m}_{x}^2 & (1-\cos\theta)\mathrm{m}_{x}\mathrm{m}_{y}+\sin\theta\mathrm{m}_{z} & (1-\cos\theta)\mathrm{m}_{x}\mathrm{m}_{z}-\sin\theta\mathrm{m}_{y}\vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
(1-\cos\theta)\mathrm{m}_{y}\mathrm{m}_{x}-\sin\theta\mathrm{m}_{z}& \cos\theta+(1-\cos\theta)\mathrm{m}_{y}^2 & (1-\cos\theta)\mathrm{m}_{y}\mathrm{m}_{z}+\sin\theta\mathrm{m}_{x}\vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}\\
(1-\cos\theta)\mathrm{m}_{z}\mathrm{m}_{x}+\sin\theta\mathrm{m}_{y} & (1-\cos\theta)\mathrm{m}_{z}\mathrm{m}_{y}-\sin\theta\mathrm{m}_{x} & \cos\theta+(1-\cos\theta)\mathrm{m}_{z}^2\vphantom{\dfrac{\dfrac{}{}}{\tfrac{}{}}}
\end{bmatrix}
\tag{18}\label{18}
\end{equation}
\begin{align}
& 2\cos\theta+1=\mathrm{trace}(\mathcal R)=
\nonumber\\
&\dfrac{\left(\cosh\!\xi\!+\!\cosh\!\eta\!+\!\cosh\!\zeta\right)\!+\!\left(\cosh\!\xi\cosh\!\eta\!+\!\cosh\!\eta\!\cosh\!\zeta\!+\!\cosh\!\zeta\cosh\!\xi\right)}{\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}
\nonumber\\
&\dfrac{\left(1\!+\!\cosh\!\xi\right)\left(1\!+\!\cosh\!\eta\right)\left(1\!+\!\cosh\!\zeta\right)-\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}{\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}
\tag{19}\label{19}
\end{align}
\begin{equation}
\cos\theta=\dfrac{\left(1\!+\!\cosh\!\xi\right)\left(1\!+\!\cosh\!\eta\right)\left(1\!+\!\cosh\!\zeta\right)-2\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}{2\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}
\tag{20}\label{20}
\end{equation}
\begin{equation}
\cos\theta=\dfrac{\left(1\!+\!\gamma_1\right)\left(1\!+\!\gamma_2\right)\left(1\!+\!\gamma_3\right)-2\left(1\!+\!\gamma_1\gamma_2\gamma_3\right)}{2\left(1\!+\!\gamma_1\gamma_2\gamma_3\right)}\,,\quad \gamma_{\jmath}=\left(1\!-\!\alpha_{\jmath}\right)^{\boldsymbol{-\frac12}}\:\: \vphantom{\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}}
\tag{21}\label{21}
\end{equation}
\begin{align}
\sin\theta\,\mathrm{m}_{x} & = \boldsymbol{-}\dfrac{\left(1\!+\!\cosh\!\xi\right)\sinh\!\eta\sinh\!\zeta}{2\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}
\tag{22.1}\label{22.1}\\
\sin\theta\,\mathrm{m}_{y} & = \boldsymbol{+}\dfrac{\left(1\!+\!\cosh\!\eta\right)\sinh\!\zeta\sinh\!\xi}{2\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}
\tag{22.2}\label{22.2}\\
\sin\theta\,\mathrm{m}_{z} & = \boldsymbol{-}\dfrac{\left(1\!+\!\cosh\!\zeta\right)\sinh\!\eta\sinh\!\xi}{2\left(1\!+\!\cosh\!\xi\cosh\!\eta\cosh\!\zeta\right)}
\tag{22.3}\label{22.3}
\end{align}
\begin{align}
\sin\theta & =\dfrac{\sqrt{\left(1\!+\!\gamma_1\right)^2\left(\gamma_2^2\!-\!1\right)\left(\gamma_3^2\!-\!1\right)\!+\!\left(1\!+\!\gamma_2\right)^2\left(\gamma_3^2\!-\!1\right)\left(\gamma_1^2\!-\!1\right)\!+\!\left(1\!+\!\gamma_3\right)^2\left(\gamma_1^2\!-\!1\right)\left(\gamma_2^2\!-\!1\right)}}{2\left(1\!+\!\gamma_1\gamma_2\gamma_3\right)}
\nonumber\\
\gamma_{\jmath} & =\left(1\!-\!\alpha_{\jmath}\right)^{\boldsymbol{-\frac12}}\,,\quad \theta\in [0,\pi]
\tag{23}\label{23}
\end{align}
\begin{align}
\tan\theta & =\dfrac{\sqrt{\left(1\!+\!\gamma_1\right)^2\left(\gamma_2^2\!-\!1\right)\left(\gamma_3^2\!-\!1\right)\!+\!\left(1\!+\!\gamma_2\right)^2\left(\gamma_3^2\!-\!1\right)\left(\gamma_1^2\!-\!1\right)\!+\!\left(1\!+\!\gamma_3\right)^2\left(\gamma_1^2\!-\!1\right)\left(\gamma_2^2\!-\!1\right)}}{\left(1\!+\!\gamma_1\right)\left(1\!+\!\gamma_2\right)\left(1\!+\!\gamma_3\right)-2\left(1\!+\!\gamma_1\gamma_2\gamma_3\right)}
\nonumber\\
\gamma_{\jmath} & =\left(1\!-\!\alpha_{\jmath}\right)^{\boldsymbol{-\frac12}}\,,\quad \theta\in [0,\pi]
\tag{24}\label{24}
\end{align}
\begin{align}
\mathbf{m} & =\dfrac{\biggl[\left(1\!+\!\gamma_1\right)\left(\gamma_2^2\!-\!1\right)^{\boldsymbol{\frac12}}\left(\gamma_3^2\!-\!1\right)^{\boldsymbol{\frac12}}\:\boldsymbol{,}\:\left(1\!+\!\gamma_2\right)\left(\gamma_3^2\!-\!1\right)^{\boldsymbol{\frac12}}\left(\gamma_1^2\!-\!1\right)^{\boldsymbol{\frac12}}\:\boldsymbol{,}\:\left(1\!+\!\gamma_3\right)^2\left(\gamma_1^2\!-\!1\right)^{\boldsymbol{\frac12}}\left(\gamma_2^2\!-\!1\right)^{\boldsymbol{\frac12}}\biggr]}{\sqrt{\left(1\!+\!\gamma_1\right)^2\left(\gamma_2^2\!-\!1\right)\left(\gamma_3^2\!-\!1\right)\!+\!\left(1\!+\!\gamma_2\right)^2\left(\gamma_3^2\!-\!1\right)\left(\gamma_1^2\!-\!1\right)\!+\!\left(1\!+\!\gamma_3\right)^2\left(\gamma_1^2\!-\!1\right)\left(\gamma_2^2\!-\!1\right)}}
\nonumber\\
\gamma_{\jmath} & =\left(1\!-\!\alpha_{\jmath}\right)^{\boldsymbol{-\frac12}}\,,\quad \theta\in [0,\pi]
\tag{25}\label{25}
\end{align}
$==================================================$
Figure-02 3D
(1)
see APPENDIX C - Relativistic addition of velocities
(2)
see APPENDIX B - The matrix L
(3)
Constructing $\:\boldsymbol{\alpha}\:$ from $\:\boldsymbol{\beta}\:$