There is no singularity associated with a Black-hole. At the final nanosecond in the formation of a black hole, essentially all of the matter confined within the envelope of a developing Schwarzschild sphere (whatever its size) can no longer be transformed into particle kinetic-energy, i.e., particle momentum.
Special relativity does NOT allow an inertial system to exceed the speed of light; and in the interior of a collapsing star, particles colliding at speeds approaching that of light cannot absorb a further increase in the momentum produced by gravitational forces. At this point, gravitational energy is transformed directly into radiation (entropy) rather than particle momentum.
This critical event, representing a change-in-state from matter to radiation, is preceded by an exponential increase in the momentum of particles confined within the volume of a contracting star (or any object). As particle velocities approach the speed of light, and as distance and time between particle collisions approach zero, the energy-density of a collapsing object will reach a limit where the transformation of gravitational force can no longer be defined in terms of particle collisions.
As the distance between colliding particles gets smaller, quantum mechanical factors require that the uncertainty in particle momentum correspondingly gets larger. At a critical point in this combination of events, the collision-distance between particles has decreased to a nanometer range that corresponds to the frequency of particle collisions; and particle interactions can be expressed in terms of a series of discrete quantum-mechanical wave-functions (distance and time between particle collisions) that approach the restricting value of 'h' (the Planck constant), producing a potential, quantum-mechanical catastrophe.
In order to preserve thermodynamic continuity, the thermodynamics of the system must change; consequently, particle matter is transformed into radiant energy by means of quantum mechanical processes. Gravitational energy is now expressed as a function of the total radiation-energy distributed over the surface of the ensuing Schwarzschild sphere, and any additional energy impacting the Black-hole produces an expansion of the Schwarzschild radius, while maintaining a constant energy-density, and a constant boundary acceleration, corresponding to a constant (Unruh) temperature.
A clue to the transformation of kinetic energy to radiation is seen in the function: e^hf/KT (from the Planck "key" to the ultraviolet paradox). In this function, particle kinetic-energy, "KT", increases due to an increase in particle velocity and effective particle temperature; the frequency of particle collisions, represented by "hf", increases with particle density due to increased gravitational confinement within a developing Schwarzschild object (Black Hole). But temperature and frequency do not rise to infinity, as one might expect from the Planck relationship.
The formation of a Schwarzschild boundary is coincidental with a maximum particle acceleration and a maximum temperature. This critical event represents the maximum energy-density (rather than the maximum energy) permitted by nature. Temperatures cannot rise beyond this critical point. Instead, these variables now become Black-hole constants and are conserved in all Black-Holes, regardless of their size and total energy. Subsequent to the formation of a Black-hole, temperature, acceleration, gravity and energy-density remain constant at their maximum values...even as more energy is added and the Schwarzschild envelope grows correspondingly larger.