$$W(\alpha)=\frac{1}{\pi^2}\int e^{\lambda\alpha^*-\lambda^*\alpha} \operatorname{Tr}\left[ \hat{\rho}e^{\lambda\hat{a}^\dagger} e^{-\lambda^* \hat{a}} \right] e^{-\frac{|\lambda|^2}{2}} \, d^2\lambda. $$ (Ref: Eqn 3.136 on Page 67 in "Introductory quantum optics" by C. Gerry and P. Knight (2005))
My question is about $d^2\lambda$. Is it just $d(\operatorname{Re}[\lambda]) \, d(\operatorname{Im}[\lambda])$ or something else?
What are the techniques generally used to solve these integrals if they are something else?