I am trying to decompose the isospins of a three particle state using Clebsch-Gordan coefficients such as:
$|1,1\rangle \otimes |1/2,-1/2\rangle \otimes |1,0\rangle$
Decomposing the first two states gives:
$|1,1\rangle \otimes |1/2,-1/2\rangle = \sqrt{\frac{1}{3}}|3/2,1/2\rangle + \sqrt{\frac{2}{3}}|1/2,1/2\rangle$
And then these combined with the third state give:
$|3/2,1/2\rangle \otimes |1,0 \rangle = \sqrt{\frac{3}{5}}|5/2,1/2\rangle + \sqrt{\frac{1}{15}}|3/2,1/2\rangle - \sqrt{\frac{1}{3}}|1/2,1/2\rangle$
$|1/2,1/2\rangle \otimes |1,0 \rangle = \sqrt{\frac{2}{3}}|3/2,1/2\rangle + \sqrt{\frac{1}{3}}|1/2,1/2\rangle$
When I combine these all together I get:
$|1,1\rangle \otimes |1/2,-1/2\rangle \otimes |1,0\rangle = \sqrt{\frac{1}{5}} |5/2,1/2\rangle + \frac{10+\sqrt{5}}{15} |3/2,1/2\rangle + \frac{-1+\sqrt{2}}{3}|1/2,1/2\rangle$
Which has to be incorrect as this state is not normalised. Basically my question is, what am I doing wrong?
Edit: What I'm attempting to calculate is amplitudes for processes like $\Lambda p \to \Lambda p \pi^0$ using isospin states for all of the particles.