(continued from ANSWER - Part I)
ANSWER - Part II
$\boldsymbol\S$ D. Parallel Transport on the plane - The Christoffel Coefficients
To determine the Christoffel coefficients in equations \eqref{C-02a}-\eqref{C-02d} it's necessary to introduce the first fundamental form of the theory of surfaces. The infinitesimal displacement $\mathrm d\mathbf x$ (see Figures-02,-03)
\begin{equation}
\mathrm d\mathbf x\boldsymbol{=}\mathbf x_u\mathrm du\boldsymbol+\mathbf x_v\mathrm dv
\tag{D-01}\label{D-01}
\end{equation}
has the property that
\begin{equation}
\mathbf x\left(u\boldsymbol+\mathrm du,v\boldsymbol+\mathrm dv\right)\boldsymbol=\mathbf x\left(u,v\right)\boldsymbol+\mathrm d\mathbf x\boldsymbol+\mathbf{o}\left(\left(\mathrm du^2\boldsymbol{+}\mathrm dv^2\right)^{1/2}\right)
\tag{D-02}\label{D-02}
\end{equation}
Thus the vector $\mathrm d\mathbf x$ is a first order approximation to the vector $\mathbf x\left(u\boldsymbol+\mathrm du,v\boldsymbol+\mathrm dv\right)\boldsymbol- \mathbf x\left(u, v\right)$ from the point $\mathbf x\left(u, v\right)$ on the plane to the neighboring point $\mathbf x\left(u\boldsymbol+\mathrm du,v\boldsymbol+\mathrm dv\right)$.
We now consider the quantity
\begin{align}
\mathrm I & \boldsymbol=
\mathrm d\mathbf x\boldsymbol\cdot\mathrm d\mathbf x\boldsymbol=\left(\mathbf x_u\mathrm du\boldsymbol+\mathbf x_v\mathrm dv\right)\boldsymbol\cdot\left(\mathbf x_u\mathrm du\boldsymbol+\mathbf x_v\mathrm dv\right)
\nonumber\\
& \boldsymbol=\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)\mathrm du^2\boldsymbol+2\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)\mathrm du \mathrm dv\boldsymbol+\left(\mathbf x_v\boldsymbol\cdot\mathbf x_v\right)\mathrm dv^2
\nonumber\\
&\boldsymbol=E\mathrm du^2\boldsymbol+2F\mathrm du \mathrm dv\boldsymbol+G\mathrm dv^2
\tag{D-03}\label{D-03}
\end{align}
where we set
\begin{equation}
E\boldsymbol=\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right) \,,\quad F\boldsymbol=\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)\,,\quad G\boldsymbol=\left(\mathbf x_v\boldsymbol\cdot\mathbf x_v\right)
\tag{D-04}\label{D-04}
\end{equation}
The function $\,\mathrm I\boldsymbol=
\mathrm d\mathbf x\boldsymbol\cdot\mathrm d\mathbf x\boldsymbol=E\mathrm du^2\boldsymbol+2F\mathrm du \mathrm dv\boldsymbol+G\mathrm dv^2\,$ is called the first fundamental form of $\mathbf x\boldsymbol=\mathbf x\left(u, v\right)$. It is a homogeneous function of second degree in $\mathrm du$ and $\mathrm dv$ with coefficients $E, F$ and $G$, called the first fundamental coefficients, which are functions of $u$ and $v$ and vary from point to point on the plane. Thus the first fundamental form $\mathrm I$ is the quadratic form defined on vectors $\left(\mathrm du, \mathrm dv\right)$ in the $uv$ plane by
\begin{equation}
\mathrm I \left(\mathrm du, \mathrm dv\right)\boldsymbol=E\mathrm du^2\boldsymbol+2F\mathrm du \mathrm dv\boldsymbol+G\mathrm dv^2\boldsymbol=\Vert\mathrm d\mathbf x \Vert^2 \boldsymbol=\mathrm ds^2
\tag{D-05}\label{D-05}
\end{equation}
equal to the square of the length of the infinitesimal displacement $\mathrm d\mathbf x$.
Using a vector identity(1)we find that
\begin{align}
EG\boldsymbol-F^2 & \boldsymbol=\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)\left(\mathbf x_v\boldsymbol\cdot\mathbf x_{v}\right)\boldsymbol-\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)
\nonumber\\
& \boldsymbol=\Vert\mathbf x_u\Vert^2\Vert\mathbf x_v\Vert^2\boldsymbol-\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)^2 \boldsymbol=\Vert \mathbf x_u\boldsymbol\times\mathbf x_v\Vert^2
\tag{D-06}\label{D-06}
\end{align}
But at every point $ \mathbf x_u\boldsymbol\times\mathbf x_v\boldsymbol\ne\boldsymbol 0$, by equation \eqref{B-02}, and so $EG\boldsymbol-F^2 \boldsymbol> 0$.
Now, the Christoffel coefficients will be determined from equations \eqref{C-02a}-\eqref{C-02d} in terms of the first fundamental coefficients $E,F$ and $G$, see equation \eqref{D-04}, and their partial derivatives with respect to the parameters $u,v$
\begin{equation}
E_u\boldsymbol{=}\dfrac{\partial E}{\partial u},\:\: E_v\boldsymbol{=}\dfrac{\partial E}{\partial v}\quad F_u\boldsymbol{=}\dfrac{\partial F}{\partial u},\:\: F_v\boldsymbol{=}\dfrac{\partial F}{\partial v}\quad
G_u\boldsymbol{=}\dfrac{\partial G}{\partial u},\:\: G_v\boldsymbol{=}\dfrac{\partial G}{\partial v}
\tag{D-07}\label{D-07}
\end{equation}
The procedure is to take the inner product of each of equations \eqref{C-02a}-\eqref{C-02d} by $\mathbf x_u$ and $\mathbf x_v$ successively. The two equations obtained yield a linear system with respect to the contained Christoffel coefficients.
So, taking the inner product of equation \eqref{C-02a} with $\mathbf x_u$ we have
\begin{align}
& \mathbf x_{uu} \boldsymbol=\Gamma^u_{uu}\mathbf x_u\boldsymbol+\Gamma^v_{uu}\mathbf x_v\:\boldsymbol\implies\:\left(\mathbf x_{uu}\boldsymbol\cdot\mathbf x_{u}\right) \boldsymbol=\Gamma^u_{uu}\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)\boldsymbol+\Gamma^v_{uu}\left(\mathbf x_v\boldsymbol\cdot\mathbf x_u \right)
\nonumber\\
&\boldsymbol\implies\tfrac12\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)_u \boldsymbol=E\,\Gamma^u_{uu}\boldsymbol+F\,\Gamma^v_{uu}\quad\boldsymbol\implies\quad\tfrac12 E_u \boldsymbol=E\,\Gamma^u_{uu}\boldsymbol+F\,\Gamma^v_{uu}
\tag{D-08}\label{D-08}
\end{align}
because
\begin{equation}
E_u\boldsymbol=\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)_u\boldsymbol=\left(\mathbf x_{uu}\boldsymbol\cdot\mathbf x_u\right)\boldsymbol+\left(\mathbf x_u\boldsymbol\cdot\mathbf x_{uu}\right)\boldsymbol=2\left(\mathbf x_{uu}\boldsymbol\cdot\mathbf x_u\right)
\tag{D-09}\label{D-09}
\end{equation}
that is we have the 1st equation for $\Gamma^u_{uu},\Gamma^v_{uu}$
\begin{equation}
E\,\Gamma^u_{uu}\boldsymbol+F\,\Gamma^v_{uu}\boldsymbol=\tfrac12 E_u
\tag{D-10}\label{D-10}
\end{equation}
Similarly, taking the inner product of equation \eqref{C-02a} with $\mathbf x_v$ we have
\begin{align}
& \mathbf x_{uu} \boldsymbol=\Gamma^u_{uu}\mathbf x_u\boldsymbol+\Gamma^v_{uu}\mathbf x_v\:\boldsymbol\implies\:\left(\mathbf x_{uu}\boldsymbol\cdot\mathbf x_v\right) \boldsymbol=\Gamma^u_{uu}\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)\boldsymbol+\Gamma^v_{uu}\left(\mathbf x_v\boldsymbol\cdot\mathbf x_v\right)
\nonumber\\
&\boldsymbol\implies\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)_u\boldsymbol-\left(\mathbf x_u\boldsymbol\cdot\mathbf x_{vu}\right) \boldsymbol=F\,\Gamma^u_{uu}\boldsymbol+G\,\Gamma^v_{uu}
\nonumber\\
&\boldsymbol\implies\: F_u\boldsymbol-\tfrac12 E_v \boldsymbol=F\,\Gamma^u_{uu}\boldsymbol+G\,\Gamma^v_{uu}
\tag{D-11}\label{D-11}
\end{align}
because
\begin{equation}
E_v\boldsymbol=\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)_v\boldsymbol=\left(\mathbf x_{uv}\boldsymbol\cdot\mathbf x_u\right)\boldsymbol+\left(\mathbf x_u\boldsymbol\cdot\mathbf x_{uv}\right)\boldsymbol=2\left(\mathbf x_u\boldsymbol\cdot\mathbf x_{uv}\right)\boldsymbol=2\left(\mathbf x_u\boldsymbol\cdot\mathbf x_{vu}\right)
\tag{D-12}\label{D-12}
\end{equation}
that is we have the 2nd equation for $\Gamma^u_{uu},\Gamma^v_{uu}$
\begin{equation}
F\,\Gamma^u_{uu}\boldsymbol+G\,\Gamma^v_{uu}\boldsymbol=F_u\boldsymbol-\tfrac12 E_v
\tag{D-13}\label{D-13}
\end{equation}
The pair of equations \eqref{D-10},\eqref{D-13} is a linear system with respect to the unknowns $\Gamma^u_{uu},\Gamma^v_{uu}$. The solution runs as follows
\begin{equation}
\begin{split}
&\left.
\begin{cases}
\eqref{D-10} \\
\eqref{D-13}
\end{cases}\right\}
\boldsymbol{=}
\left.
\begin{cases}
E\,\Gamma^u_{uu}\boldsymbol+F\,\Gamma^v_{uu}\boldsymbol=\tfrac12 E_u \\
F\,\Gamma^u_{uu}\boldsymbol+G\,\Gamma^v_{uu}\boldsymbol=F_u\boldsymbol-\tfrac12 E_v
\end{cases}\right\} \boldsymbol{\Longrightarrow}\\
&\left.
\begin{cases}
\Gamma^u_{uu}\boldsymbol=
\tfrac{
\begin{vmatrix}
\tfrac12 E_u & F \\
F_u\boldsymbol-\tfrac12 E_v & G
\end{vmatrix}
}{\begin{vmatrix}
E & F \\
F & G
\end{vmatrix}}
\boldsymbol=\dfrac{GE_u\boldsymbol-2FF_u\boldsymbol+F E_v}{2\left(EG\boldsymbol-F^2\right)}
\\
\Gamma^v_{uu}\boldsymbol=
\tfrac{
\begin{vmatrix}
E&\tfrac12 E_u \\
F& F_u\boldsymbol-\tfrac12 E_v
\end{vmatrix}
}{\begin{vmatrix}
E & F \\
F & G
\end{vmatrix}}
\boldsymbol= \dfrac{2EF_u\boldsymbol-EE_v\boldsymbol-F E_{u}}{2\left(EG\boldsymbol-F^2\right)}
\end{cases}\right\}\\
\end{split}
\tag{D-14}\label{D-14}
\end{equation}
so
\begin{equation}
\boxed{\:\:\:
\begin{split}
\Gamma^u_{uu} & \boldsymbol=\dfrac{GE_u\boldsymbol-2FF_u\boldsymbol+F E_v}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{\dfrac{a}{b}}{b}}\\
\Gamma^v_{uu} & \boldsymbol=\dfrac{2EF_u\boldsymbol-EE_v\boldsymbol-F E_u}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{a}{\dfrac{a}{b}}}
\end{split}\:\:\:}
\tag{D-15}\label{D-15}
\end{equation}
Taking the inner product of equation \eqref{C-02d} with $\mathbf x_u$ we have
\begin{align}
&\mathbf x_{vv} \boldsymbol=\Gamma^u_{vv}\mathbf x_u\boldsymbol+\Gamma^v_{vv}\mathbf x_v\quad\boldsymbol\implies\quad\left(\mathbf x_{vv}\boldsymbol\cdot\mathbf x_u\right) \boldsymbol=\Gamma^u_{vv}\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)\boldsymbol+\Gamma^v_{vv}\left(\mathbf x_v\boldsymbol\cdot\mathbf x_u\right)
\nonumber\\
& \boldsymbol\implies F_v\boldsymbol-\tfrac12G_u \boldsymbol=E\,\Gamma^u_{vv}\boldsymbol+F\,\Gamma^v_{vv}
\tag{D-16}\label{D-16}
\end{align}
because
\begin{equation}
F_v\boldsymbol=\left(\mathbf x_v\boldsymbol\cdot\mathbf x_u\right)_v\boldsymbol=\left(\mathbf x_{vv}\boldsymbol\cdot\mathbf x_u\right)\boldsymbol+\left(\mathbf x_v\boldsymbol\cdot\mathbf x_{uv}\right)\boldsymbol=\left(\mathbf x_{vv}\boldsymbol\cdot\mathbf x_u\right)\boldsymbol+\tfrac12G_u
\tag{D-17}\label{D-17}
\end{equation}
and
\begin{equation}
G_u\boldsymbol=\left(\mathbf x_v\boldsymbol\cdot\mathbf x_v\right)_u\boldsymbol=\left(\mathbf x_{vu}\boldsymbol\cdot\mathbf x_v\right)\boldsymbol+\left(\mathbf x_v\boldsymbol\cdot\mathbf x_{vu}\right)\boldsymbol=2\left(\mathbf x_v\boldsymbol\cdot\mathbf x_{vu}\right)\boldsymbol=2\left(\mathbf x_v \boldsymbol\cdot\mathbf x_{uv}\right)
\tag{D-18}\label{D-18}
\end{equation}
So we have the 1st equation for $\Gamma^u_{vv},\Gamma^v_{vv}$
\begin{equation}
E\,\Gamma^u_{vv}\boldsymbol+F\,\Gamma^v_{vv}\boldsymbol=F_v\boldsymbol-\tfrac12G_u
\tag{D-19}\label{D-19}
\end{equation}
Again taking the inner product of equation \eqref{C-02d} with $\mathbf x_v$ we have
\begin{align}
& \mathbf x_{vv}\boldsymbol=\Gamma^u_{vv}\mathbf x_u\boldsymbol+\Gamma^v_{vv}\mathbf x_v\quad\boldsymbol\implies\quad\left(\mathbf x_{vv}\boldsymbol\cdot\mathbf x_v\right) \boldsymbol=\Gamma^u_{vv}\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)\boldsymbol+\Gamma^v_{vv}\left(\mathbf x_v\boldsymbol\cdot\mathbf x_v\right)
\nonumber\\
&\boldsymbol\implies\tfrac12 G_{v} \boldsymbol{=}F\,\Gamma^1_{22}\boldsymbol{+}G\,\Gamma^2_{22}
\tag{D-20}\label{D-20}
\end{align}
because
\begin{equation}
G_v\boldsymbol=\left(\mathbf x_v\boldsymbol\cdot\mathbf x_v\right)_v\boldsymbol=\left(\mathbf x_{vv}\boldsymbol\cdot\mathbf x_v\right)\boldsymbol+\left(\mathbf x_v\boldsymbol\cdot\mathbf x_{vv}\right)\boldsymbol=2\left(\mathbf x_{vv}\boldsymbol\cdot\mathbf x_v\right)
\tag{D-21}\label{D-21}
\end{equation}
hence we have the 2nd equation for $\Gamma^u_{vv},\Gamma^v_{vv}$
\begin{equation}
F\,\Gamma^u_{vv}\boldsymbol+G\,\Gamma^v_{vv}\boldsymbol=\tfrac12 G_v
\tag{D-22}\label{D-22}
\end{equation}
The pair of equations \eqref{D-19},\eqref{D-22} is a linear system with respect to the unknowns $\Gamma^u_{vv},\Gamma^u_{vv}$. The solution runs as follows
\begin{equation}
\begin{split}
&\left.
\begin{cases}
\eqref{D-19} \\
\eqref{D-22}
\end{cases}\right\}
\boldsymbol{=}
\left.
\begin{cases}
E\,\Gamma^u_{vv}\boldsymbol+F\,\Gamma^v_{vv}\boldsymbol=F_v\boldsymbol-\tfrac12G_u\\
F\,\Gamma^u_{vv}\boldsymbol+G\,\Gamma^v_{vv}\boldsymbol=\tfrac12 G_v
\end{cases}\right\} \boldsymbol\implies\\
&\left.
\begin{cases}
\Gamma^u_{vv}\boldsymbol=
\tfrac{
\begin{vmatrix}
F_v\boldsymbol-\tfrac12G_u & F \\
\tfrac12 G_v & G
\end{vmatrix}
}{\begin{vmatrix}
E & F \\
F & G
\end{vmatrix}}
\boldsymbol= \dfrac{2GF_v\boldsymbol-GG_u\boldsymbol-F G_v}{2\left(EG\boldsymbol-F^2\right)}
\\
\Gamma^v_{vv}\boldsymbol=
\tfrac{
\begin{vmatrix}
E & F_v\boldsymbol-\tfrac12G_u \\
F & \tfrac12 G_v
\end{vmatrix}
}{\begin{vmatrix}
E & F \\
F & G
\end{vmatrix}}
\boldsymbol= \dfrac{EG_v\boldsymbol-2FF_v\boldsymbol+F G_u}{2\left(EG\boldsymbol-F^2\right)}
\end{cases}\right\}\\
\end{split}
\tag{D-23}\label{D-23}
\end{equation}
So
\begin{equation}
\boxed{\:\:\:
\begin{split}
\Gamma^u_{vv} & \boldsymbol=\dfrac{2GF_{v}\boldsymbol{-}GG_{u}\boldsymbol{-}F G_{v}}{2\left(EG-F^2\right)}\vphantom{\dfrac{\dfrac{a}{b}}{b}}\\
\Gamma^v_{vv} & \boldsymbol=\dfrac{EG_v\boldsymbol-2FF_v\boldsymbol+F G_u}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{a}{\dfrac{a}{b}}}\\
\end{split}\:\:\:}
\tag{D-24}\label{D-24}
\end{equation}
Finally for the determination of coefficients $\Gamma^u_{uv}\boldsymbol=\Gamma^u_{vu},\Gamma^v_{uv}\boldsymbol=\Gamma^v_{vu}$ taking the inner product of equation \eqref{C-02b} with $\mathbf x_u$ yields
\begin{align}
&\mathbf x_{uv} \boldsymbol=\Gamma^u_{uv}\mathbf x_u\boldsymbol+\Gamma^v_{uv}\mathbf x_v\:\boldsymbol\implies\:\left(\mathbf x_{uv}\boldsymbol\cdot\mathbf x_u\right) \boldsymbol=\Gamma^u_{uv}\left(\mathbf x_u\boldsymbol\cdot\mathbf x_u\right)\boldsymbol+\Gamma^v_{uv}\left(\mathbf x_v\boldsymbol\cdot\mathbf x_u\right)
\nonumber\\
& \boldsymbol\implies\tfrac12 E_{v} \boldsymbol{=}E\,\Gamma^1_{12}\boldsymbol{+}F\,\Gamma^2_{12}
\tag{D-25}\label{D-25}
\end{align}
because $2\left(\mathbf x_{uv}\boldsymbol\cdot\mathbf x_u\right)\boldsymbol=E_v$, see equation \eqref{D-12}, so we have the 1st equation for $\Gamma^u_{uv},\Gamma^v_{uv}$
\begin{equation}
E\,\Gamma^u_{uv}\boldsymbol+F\,\Gamma^v_{uv}\boldsymbol=\tfrac12 E_v
\tag{D-26}\label{D-26}
\end{equation}
From the inner product of equation \eqref{C-02b} with $\mathbf x_v$ we have
\begin{align}
& \mathbf x_{uv}\boldsymbol=\Gamma^u_{uv}\mathbf x_u\boldsymbol+\Gamma^v_{uv}\mathbf x_v\quad\boldsymbol\implies\quad\left(\mathbf x_{uv}\boldsymbol\cdot\mathbf x_v\right)\boldsymbol=\Gamma^u_{uv}\left(\mathbf x_u\boldsymbol\cdot\mathbf x_v\right)\boldsymbol+\Gamma^v_{uv}\left(\mathbf x_v\boldsymbol\cdot\mathbf x_v\right)
\nonumber\\
&\boldsymbol\implies\tfrac12 G_u \boldsymbol=F\,\Gamma^u_{uv}\boldsymbol+G\,\Gamma^v_{uv}
\tag{D-27}\label{D-27}
\end{align}
because $2\left(\mathbf x_{uv}\boldsymbol\cdot\mathbf x_v\right)\boldsymbol=G_u$, see equation \eqref{D-18}, so we have the 2nd equation for $\Gamma^u_{uv},\Gamma^v_{uv}$
\begin{equation}
F\,\Gamma^u_{uv}\boldsymbol+G\,\Gamma^v_{uv}\boldsymbol=\tfrac12 G_u
\tag{D-28}\label{D-28}
\end{equation}
The pair of equations \eqref{D-26},\eqref{D-28} is a linear system with respect to the unknowns $\Gamma^u_{uv},\Gamma^v_{uv}$. The solution runs as follows
\begin{equation}
\begin{split}
&\left.
\begin{cases}
\eqref{D-26} \\
\eqref{D-28}
\end{cases}\right\}
\boldsymbol=
\left.
\begin{cases}
E\,\Gamma^u_{uv}\boldsymbol+F\,\Gamma^v_{uv}\boldsymbol=\tfrac12 E_v\\
F\,\Gamma^u_{uv}\boldsymbol+G\,\Gamma^v_{uv}\boldsymbol=\tfrac12 G_u
\end{cases}\right\} \boldsymbol{\Longrightarrow}\\
&\left.
\begin{cases}
\Gamma^u_{uv}\boldsymbol=
\tfrac{
\begin{vmatrix}
\tfrac12 E_v & F \\
\tfrac12 G_u & G
\end{vmatrix}
}{\begin{vmatrix}
E & F \\
F & G
\end{vmatrix}}
\boldsymbol= \dfrac{GE_v\boldsymbol-F G_u}{2\left(EG\boldsymbol-F^2\right)}
\\
\Gamma^v_{uv}\boldsymbol=
\tfrac{
\begin{vmatrix}
E & \tfrac12 E_v \\
F & \tfrac12 G_u
\end{vmatrix}
}{\begin{vmatrix}
E & F \\
F & G
\end{vmatrix}}
\boldsymbol= \dfrac{EG_u\boldsymbol-F E_v}{2\left(EG\boldsymbol-F^2\right)}
\end{cases}\right\}\\
\end{split}
\tag{D-29}\label{D-29}
\end{equation}
So
\begin{equation}
\boxed{\:\:\:
\begin{split}
\Gamma^u_{uv} & \boldsymbol=\Gamma^u_{vu} \boldsymbol=\dfrac{GE_v\boldsymbol-F G_u}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{\dfrac{a}{b}}{b}}\\
\Gamma^v_{uv} & \boldsymbol=\Gamma^v_{vu}\boldsymbol= \dfrac{EG_u\boldsymbol-F E_v}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{a}{\dfrac{a}{b}}}\\
\end{split}\:\:\:}
\tag{D-30}\label{D-30}
\end{equation}
All Christoffel coefficients derived in equations \eqref{D-15},\eqref{D-24} and \eqref{D-30} are contained in the following two matrices
\begin{equation}
\begin{split}
\boldsymbol{\Gamma}^u & \boldsymbol=
\begin{bmatrix}
\Gamma^u_{uu} & \Gamma^u_{uv}\vphantom{\dfrac{\tfrac{a}{b}}{\dfrac{a}{b}}}\\
\Gamma^u_{vu} & \Gamma^u_{vv}\vphantom{\dfrac{\dfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol=
\begin{bmatrix}
\dfrac{GE_u\boldsymbol-2FF_u\boldsymbol+F E_v}{2\left(EG\boldsymbol-F^2\right)} & \dfrac{GE_v\boldsymbol-F G_u}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
\\
\dfrac{GE_v\boldsymbol-F G_u}{2\left(EG\boldsymbol-F^2\right)}& \dfrac{2GF_v\boldsymbol{-}GG_u\boldsymbol{-}F G_v}{2\left(EG-F^2\right)}\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}\\
\boldsymbol{\Gamma}^v & \boldsymbol=
\begin{bmatrix}
\Gamma^v_{uu} & \Gamma^v_{uv}\vphantom{\dfrac{\tfrac{a}{b}}{\dfrac{a}{b}}}\\
\Gamma^v_{vu} & \Gamma^v_{vv}\vphantom{\dfrac{\dfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol=
\begin{bmatrix}
\dfrac{2EF_u\boldsymbol-EE_v\boldsymbol-F E_u}{2\left(EG\boldsymbol-F^2\right)} & \dfrac{EG_u\boldsymbol-F E_v}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
\\
\dfrac{EG_u\boldsymbol-F E_v}{2\left(EG\boldsymbol-F^2\right)}& \dfrac{EG_v\boldsymbol-2FF_v\boldsymbol+F G_u}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}\\
\end{split}
\tag{D-31}\label{D-31}
\end{equation}
$\boldsymbol\S$ E. Parallel Transport on the plane - Polar Coordinates
Polar coordinates on the plane is a special case of curvilinear coordinates. In the regular parametric representation \eqref{B-01}
\begin{equation}
\mathbf x\left(u,v\right)\boldsymbol=x_1\left(u,v\right)\mathbf e_1\boldsymbol+x_2\left(u,v\right)\mathbf e_2
\nonumber
\end{equation}
we have
\begin{equation}
\begin{split}
u \boldsymbol\longrightarrow r\,\qquad & v\boldsymbol\longrightarrow \theta\\
x_1\left(u,v\right) \boldsymbol\longrightarrow x_1\left(r,\theta\right)\boldsymbol=r\cos\theta\,\qquad & x_2\left(u,v\right) \boldsymbol\longrightarrow x_2\left(r,\theta\right)\boldsymbol=r\sin\theta\\
\end{split}
\tag{E-01}\label{E-01}
\end{equation}
so
\begin{equation}
\mathbf x\left(r,\theta\right)\boldsymbol=r\cos\theta\,\mathbf e_1\boldsymbol+r\sin\theta\,\mathbf e_2
\tag{E-02}\label{E-02}
\end{equation}
For the vectors tangent to the $\,r\boldsymbol-,\theta\boldsymbol-$parametric curves
\begin{equation}
\mathbf x_r\boldsymbol=\dfrac{\partial\mathbf x}{\partial r}\boldsymbol=\cos\theta\,\mathbf e_1\boldsymbol+\sin\theta\,\mathbf e_2\,, \qquad \mathbf x_\theta\boldsymbol=\dfrac{\partial\mathbf x}{\partial \theta}\boldsymbol=\boldsymbol-r\sin\theta\,\mathbf e_1\boldsymbol+r\cos\theta\,\mathbf e_2
\tag{E-03}\label{E-03}
\end{equation}
with unit vectors respectively
\begin{equation}
\mathbf e_r\boldsymbol=\dfrac{\mathbf x_r}{\Vert\mathbf x_r\Vert}\boldsymbol=\cos\theta\,\mathbf e_1\boldsymbol+\sin\theta\,\mathbf e_2\,, \qquad \mathbf e_\theta\boldsymbol=\dfrac{\mathbf x_\theta}{\Vert\mathbf x_\theta\Vert}\boldsymbol=\boldsymbol-\sin\theta\,\mathbf e_1\boldsymbol+\cos\theta\,\mathbf e_2
\tag{E-04}\label{E-04}
\end{equation}
as shown in Figure-05.

The infinitesimal displacement vector is
\begin{equation}
\mathrm d\mathbf x\boldsymbol=\mathbf x_r\mathrm dr\boldsymbol+\mathbf x_\theta\mathrm d\theta\boldsymbol=\left(\cos\theta\,\mathrm dr\boldsymbol-r\sin\theta\,\mathrm d\theta\right)\mathbf e_1\boldsymbol+\left(\sin\theta\,\mathrm dr\boldsymbol+r\cos\theta\,\mathrm d\theta\right)\mathbf e_2
\tag{E-05}\label{E-05}
\end{equation}
and the first fundamental form
\begin{equation}
\begin{split}
\mathrm ds^2\boldsymbol=\mathrm d\mathbf x\boldsymbol\cdot\mathrm d\mathbf x & \boldsymbol=\left(\mathbf x_r\boldsymbol\cdot\mathbf x_r\right)\mathrm dr^2\boldsymbol+2\left(\mathbf x_r\boldsymbol\cdot\mathbf x_\theta\right)\mathrm dr\mathrm d\theta\boldsymbol+\left(\mathbf x_\theta\boldsymbol{\cdot}\mathbf{x}_\theta\right)\mathrm d\theta^2\\
&\boldsymbol=E\mathrm dr^2\boldsymbol+2F\mathrm dr\mathrm d\theta\boldsymbol+G\mathrm d\theta^2\\
\end{split}
\tag{E-06}\label{E-06}
\end{equation}
The first fundamental coefficients $E,F,G$ and their first derivatives are
\begin{equation}
\begin{array}{lll}
E\boldsymbol=\mathbf x_r\boldsymbol\cdot\mathbf x_r\boldsymbol=1 & \quad E_r\boldsymbol=0 & \quad E_\theta\boldsymbol=0\\
F\boldsymbol=\mathbf x_r\boldsymbol\cdot\mathbf x_\theta\boldsymbol=0 & \quad F_r\boldsymbol=0 & \quad F_\theta\boldsymbol=0\\
G\boldsymbol=\mathbf x_\theta\boldsymbol\cdot\mathbf x_\theta\boldsymbol=r^2 & \quad G_r\boldsymbol=2r & \quad G_\theta\boldsymbol=0
\end{array}
\tag{E-07}\label{E-07}
\end{equation}
so equation \eqref{E-06} is simplified to
\begin{equation}
\mathrm ds^2\boldsymbol=\mathrm dr^2\boldsymbol+r^2\mathrm d\theta^2
\tag{E-08}\label{E-08}
\end{equation}
Note also that
\begin{equation}
\Vert\mathbf x_r\boldsymbol\times\mathbf x_\theta\Vert^2\boldsymbol=EG\boldsymbol-F^2 \boldsymbol=r^2
\tag{E-09}\label{E-09}
\end{equation}
Translating equation \eqref{D-31} to polar coordinates we have
\begin{equation}
\begin{split}
\boldsymbol{\Gamma}^r & \boldsymbol=
\begin{bmatrix}
\Gamma^r_{rr} & \Gamma^r_{r\theta}\vphantom{\dfrac{\tfrac{a}{b}}{\dfrac{a}{b}}}\\
\Gamma^r_{\theta r} & \Gamma^r_{\theta\theta}\vphantom{\dfrac{\dfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol=
\begin{bmatrix}
\dfrac{GE_r\boldsymbol-2FF_r\boldsymbol+F E_\theta}{2\left(EG\boldsymbol-F^2\right)} & \dfrac{GE_\theta\boldsymbol-F G_r}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
\\
\dfrac{GE_\theta\boldsymbol-F G_r}{2\left(EG\boldsymbol-F^2\right)}& \dfrac{2GF_\theta\boldsymbol{-}GG_r\boldsymbol{-}F G_\theta}{2\left(EG-F^2\right)}\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}\\
\boldsymbol{\Gamma}^\theta & \boldsymbol=
\begin{bmatrix}
\Gamma^\theta_{rr} & \Gamma^\theta_{r\theta}\vphantom{\dfrac{\tfrac{a}{b}}{\dfrac{a}{b}}}\\
\Gamma^\theta_{\theta r} & \Gamma^\theta_{\theta\theta}\vphantom{\dfrac{\dfrac{a}{b}}{\tfrac{a}{b}}}
\end{bmatrix}
\boldsymbol=
\begin{bmatrix}
\dfrac{2EF_r\boldsymbol-EE_\theta\boldsymbol-F E_r}{2\left(EG\boldsymbol-F^2\right)} & \dfrac{EG_r\boldsymbol-F E_\theta}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
\\
\dfrac{EG_r\boldsymbol-F E_\theta}{2\left(EG\boldsymbol-F^2\right)}& \dfrac{EG_\theta\boldsymbol-2FF_\theta\boldsymbol+F G_r}{2\left(EG\boldsymbol-F^2\right)}\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}\\
\end{split}
\tag{E-10}\label{E-10}
\end{equation}
and inserting the values of equation \eqref{E-07} we have the Christoffel coefficients for the polar coordinates on the plane
\begin{equation}
\begin{split}
\boldsymbol{\Gamma}^r & \boldsymbol=
\begin{bmatrix}
\Gamma^r_{rr} & \Gamma^r_{r\theta}\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
\Gamma^r_{\theta r} & \Gamma^r_{\theta\theta}\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}
\boldsymbol{=}
\begin{bmatrix}
\:\:0 & \hphantom{ \boldsymbol{-}} 0\:\,\,\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
\:\:0 & \boldsymbol{-}r\:\,\,\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}\\
\boldsymbol{\Gamma}^\theta & \boldsymbol=
\begin{bmatrix}
\Gamma^\theta_{rr} & \Gamma^\theta_{r\theta}\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
\Gamma^\theta_{\theta r} & \Gamma^\theta_{\theta\theta}\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}
\boldsymbol=
\begin{bmatrix}
0 & 1/r\vphantom{\dfrac{a}{\tfrac{a}{b}}}\\
1/r & 0\vphantom{\dfrac{\tfrac{a}{b}}{b}}
\end{bmatrix}\\
\end{split}
\tag{E-11}\label{E-11}
\end{equation}
Consider now a vector $\:\boldsymbol\xi\boldsymbol=\left(\xi_r,\xi_\theta\right)\:$ in polar coordinates at a point $\:\boldsymbol\chi\boldsymbol=\left(r,\theta\right)\:$ parallel transported to $\:\boldsymbol\xi\boldsymbol+\mathrm d\boldsymbol\xi\boldsymbol=\left(\xi_r\boldsymbol+\mathrm d\xi_r,\xi_\theta\boldsymbol+\mathrm d\xi_\theta\right)\:$ at point $\:\boldsymbol\chi\boldsymbol+\mathrm d\boldsymbol\chi\boldsymbol=\left(r\boldsymbol+\mathrm dr,\theta\boldsymbol+\mathrm d\theta\right)$. We have
\begin{equation}
\mathrm d\boldsymbol\xi\boldsymbol=
\begin{bmatrix}
\mathrm d\xi_r\vphantom{\dfrac{a}{b}}\\
\mathrm d\xi_\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol=
\boldsymbol-
\begin{bmatrix}
\Bigl<\boldsymbol\Gamma^r\boldsymbol\xi,\mathrm d\boldsymbol\chi\Bigr> \vphantom{\dfrac{a}{b}}\\
\Bigl<\boldsymbol\Gamma^\theta\boldsymbol\xi,\mathrm d\boldsymbol\chi\Bigr>\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\tag{E-12}\label{E-12}
\end{equation}
Using the Christoffel coefficients of \eqref{E-11} we have explicitly
\begin{align}
\mathrm d\xi_r & \boldsymbol=\boldsymbol-\Bigl<\boldsymbol\Gamma^r\boldsymbol\xi,\mathrm d\boldsymbol\chi\Bigr>\boldsymbol=\boldsymbol-\left(
\begin{bmatrix}
\:\:0 & \hphantom{ \boldsymbol-} 0\:\:\vphantom{\dfrac{a}{b}}\\
\:\:0 & \boldsymbol-r\:\:\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\begin{bmatrix}
\xi_r\vphantom{\dfrac{a}{b}}\\
\xi_\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}\right)^\mathsf T
\begin{bmatrix}
\mathrm dr\vphantom{\dfrac{a}{b}}\\
\mathrm d\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\nonumber\\
& \boldsymbol=\boldsymbol-
\begin{bmatrix}
0 & -r \xi_\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\begin{bmatrix}
\mathrm dr\vphantom{\dfrac{a}{b}}\\
\mathrm d\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\boldsymbol=
r \xi_\theta\mathrm d\theta
\nonumber\\
\texttt{and}
\nonumber\\
\mathrm d\xi_\theta & \boldsymbol=\boldsymbol{-}\Bigl<\boldsymbol\Gamma^\theta\boldsymbol\xi,\mathrm d\boldsymbol\chi\Bigr>\boldsymbol=\boldsymbol-\left(
\begin{bmatrix}
\:\:0 & r^{\boldsymbol-1}\:\vphantom{\dfrac{a}{b}}\\
\:\:r^{\boldsymbol-1} & 0\:\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\begin{bmatrix}
\xi_r\vphantom{\dfrac{a}{b}}\\
\xi_\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}\right)^\mathsf T
\begin{bmatrix}
\mathrm dr\vphantom{\dfrac{a}{b}}\\
\mathrm d\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\nonumber\\
&\boldsymbol=\boldsymbol-
\begin{bmatrix}
r^{\boldsymbol-1}\xi_\theta & r^{\boldsymbol-1}\xi_r\vphantom{\dfrac{a}{b}}
\end{bmatrix}
\begin{bmatrix}
\mathrm dr\vphantom{\dfrac{a}{b}}\\
\mathrm d\theta\vphantom{\dfrac{a}{b}}
\end{bmatrix}\boldsymbol=\boldsymbol-\dfrac{\xi_\theta\mathrm dr\boldsymbol+\xi_r\mathrm d\theta }{r}
\nonumber
\end{align}
so respectively
\begin{equation}
\begin{split}
\mathrm d\xi_r\boldsymbol-r \xi_\theta\mathrm d\theta & \boldsymbol=0\\
r\mathrm d\xi_\theta\boldsymbol+\xi_\theta\mathrm dr\boldsymbol+\xi_r\mathrm d\theta & \boldsymbol=0\\
\end{split}
\tag{E-13}\label{E-13}
\end{equation}
Given a regular curve on the plane with parametric representation in polar coordinates
\begin{equation}
\boldsymbol\chi\left(\lambda\right)\boldsymbol=
\Bigl(r\left(\lambda\right),\theta\left(\lambda\right)\Bigr)
\tag{E-14}\label{E-14}
\end{equation}
then division of equations \eqref{E-13} by $\,\mathrm d\lambda\,$ yields
\begin{equation}
\begin{split}
\dfrac{\mathrm d\xi_r}{\mathrm d\lambda}\boldsymbol-r \xi_\theta\dfrac{\mathrm d\theta}{\mathrm d\lambda} & \boldsymbol=0\\
r\dfrac{\mathrm d\xi_\theta}{\mathrm d\lambda}\boldsymbol+\xi_\theta\dfrac{\mathrm d r}{\mathrm d\lambda}\boldsymbol+\xi_r\dfrac{\mathrm d\theta}{\mathrm d\lambda}&\boldsymbol=0\\
\end{split}
\tag{E-15}\label{E-15}
\end{equation}
or using an over-dot to represent differentiation with respect to $\,\lambda$
\begin{equation}
\begin{split}
\dot\xi_r\boldsymbol-r \xi_\theta\dot{\theta\:} & \boldsymbol= 0
\nonumber\\
r\dot\xi_\theta\boldsymbol+\xi_\theta\dot r\boldsymbol+\xi_r\dot{\theta\:} & \boldsymbol=0\\
\end{split}
\tag{E-16}\label{E-16}
\end{equation}
$=================================================$
(1)
Equation \eqref{D-06} is derived from the identity
\begin{align}
&\left(\mathbf{a}\boldsymbol{\cdot}\mathbf{a}\right)\left(\mathbf{b}\boldsymbol{\cdot}\mathbf{b}\right)\boldsymbol{-}\left(\mathbf{a}\boldsymbol{\cdot}\mathbf{b}\right)\left(\mathbf{a}\boldsymbol{\cdot}\mathbf{b}\right) \boldsymbol{=}\Vert\mathbf{a}\Vert^2\Vert\mathbf{b}\Vert^2\boldsymbol{-}\left(\mathbf{a}\boldsymbol{\cdot}\mathbf{b}\right)^2\boldsymbol{=}
\nonumber\\
&\Vert\mathbf{a}\Vert^2\Vert\mathbf{b}\Vert^2\boldsymbol{-}\Vert\mathbf{a}\Vert^2\Vert\mathbf{b}\Vert^2\cos^2\theta\boldsymbol{=}\Vert\mathbf{a}\Vert^2\Vert\mathbf{b}\Vert^2\left(1\boldsymbol{-}\cos^2\theta\right)\boldsymbol{=}
\nonumber\\
&\Vert\mathbf{a}\Vert^2\Vert\mathbf{b}\Vert^2\sin^2\theta \boldsymbol{=}\Vert \mathbf{a}\boldsymbol{\times}\mathbf{b}\Vert^2
\nonumber
\end{align}
(to be continued in ANSWER - Part III)