Consider the following Lagrangian density $$ \mathcal{L}(\Phi,\partial_\mu\Phi)=-\frac{1}{2}\partial_\mu\Phi\partial^\mu\Phi-\frac{m\Phi^2}{2}. $$
I want to calculate the equation of motion using the Euler-Lagrange equation to derive the Klein-Gordon equation. The E-L equation states $$\frac{\partial \mathcal{L}}{\partial\Phi}-\partial_\mu\frac{\partial\mathcal{L}}{\partial\,(\partial_\mu\Phi)}=0$$ So, I calculated $\frac{\partial\mathcal{L}}{\partial\Phi}=-m^2\Phi$, and for the other term $$ \partial_\mu\frac{\partial\mathcal{L}}{\partial(\partial_\mu\Phi)}=-\frac{1}{2}\partial_\mu\bigg(\frac{\partial}{\partial(\partial_\mu\Phi)}\bigg)\underbrace{(\partial_\nu\Phi g^{\nu\alpha}\partial_\alpha\Phi)}_{\text{New free index, $\nu$}}=-\frac{1}{2}\partial_\mu g^{\nu \alpha}(\delta^{\mu}_\nu\partial_\alpha\Phi+\delta^\mu_\alpha \partial_\nu\Phi=-\frac{1}{2}\partial_\mu(\partial^\mu\Phi+\partial^\mu\Phi)=-\partial_\mu\partial^\mu\Phi. $$
My question is, is it correct that I have to introduce the free index $\nu$, or are there easier ways to do this?