While discussing Newton's laws, our book says
Force is proportional to rate of change of momentum
so they say
F is proportional to mass * acceleration if mass is constant
So $F=kma$ where $k$ is a constant.
They then say we choose a unit of force such that it produces acceleration of $1\ \mathrm{m/s}^2$ in $1\ \mathrm{kg}$ mass so $1\ \mathrm{N}=k\cdot 1\,\mathrm{kg}\cdot 1\,\mathrm{m/s}^2$. Then they say $k=1$.
How is $k=1$? It should be $1\,\mathrm{N}/(1\,\mathrm{kg\, m/s}^2)$, which is different than just $1$. Force is always written as $F=ma$ not $F=kma$ which seems false.
This question is different as it asks the actual concept of dimensions rather than other number the question asker of other question was confused about the choice of number not of dimension.