For the Lorentz trasformations I use this notation
\begin{equation*} \left\{\begin{aligned} x&=\gamma (x'+\beta ct')\\ y&=y'\\ z&=z'\\ ct&=\gamma (ct'+\beta x')\\ \end{aligned}\right. \end{equation*}
with this matrix
$$L^*=\begin{pmatrix}\gamma & 0 & 0 & \beta\gamma\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ \beta \gamma & 0 & 0 & \gamma\end{pmatrix}$$ Introducing the imaginary unit $i=\sqrt{-1}$, the Lorentz transformations will allow you to switch from an orthogonal Cartesian coordinate system to an orthogonal one. Hence I, actually, use $L$ that is an orthogonal matrix. $$L=L(\beta)=\begin{pmatrix}\gamma & 0 & 0 & -i\beta\gamma\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ i\beta \gamma & 0 & 0 & \gamma \end{pmatrix}$$
My usual notation that I use is the following to define a quadrivector $\boldsymbol{\mathcal{X}}=(x,y,z,ict)$, or even better is:
$$\boldsymbol{\mathcal{X}}^\intercal=\begin{pmatrix} x \\ y \\ z \\ ict \end{pmatrix}$$ Why most physicists now use $(ct,x,y,z)$ instead of $(x,y,z,ict)$ (or $(ict, x,y,z)$) and let the electromagnetic field tensor have real components?