0

I was going through the Feynman Lectures on optics when I came across an explanation for Fermat's Principle. I did not fully understand the explanation- can someone please break it down in a simpler way for me?

Finally, we give a very crude view of what actually happens, how the whole thing really works, from what we now believe is the correct, quantum-dynamically accurate viewpoint, but of course only qualitatively described. In following the light from A to B in Fig. 26–3, we find that the light does not seem to be in the form of waves at all. Instead the rays seem to be made up of photons, and they actually produce clicks in a photon counter, if we are using one. The brightness of the light is proportional to the average number of photons that come in per second, and what we calculate is the chance that a photon gets from A to B, say by hitting the mirror. The law for that chance is the following very strange one. Take any path and find the time for that path; then make a complex number, or draw a little complex vector, $\rho e^{i\theta}$, whose angle $\theta$ is proportional to the time. The number of turns per second is the frequency of the light. Now take another path; it has, for instance, a different time, so the vector for it is turned through a different angle—the angle being always proportional to the time. Take all the available paths and add on a little vector for each one; then the answer is that the chance of arrival of the photon is proportional to the square of the length of the final vector, from the beginning to the end!

enter image description here

Now let us show how this implies the principle of least time for a mirror. We consider all rays, all possible paths ADB, AEB, ACB, etc., in Fig. 26–3. The path ADB makes a certain small contribution, but the next path, AEB, takes a quite different time, so its angle θ is quite different. Let us say that point C corresponds to minimum time, where if we change the paths the times do not change. So for awhile the times do change, and then they begin to change less and less as we get near point C (Fig. 26–14). So the arrows which we have to add are coming almost exactly at the same angle for awhile near C, and then gradually the time begins to increase again, and the phases go around the other way, and so on. Eventually, we have quite a tight knot. The total probability is the distance from one end to the other, squared. Almost all of that accumulated probability occurs in the region where all the arrows are in the same direction (or in the same phase). All the contributions from the paths which have very different times as we change the path, cancel themselves out by pointing in different directions. That is why, if we hide the extreme parts of the mirror, it still reflects almost exactly the same, because all we did was to take out a piece of the diagram inside the spiral ends, and that makes only a very small change in the light. So this is the relationship between the ultimate picture of photons with a probability of arrival depending on an accumulation of arrows, and the principle of least time.

MaiSwa
  • 1

0 Answers0