1) We start writing the Lagrangian
$$L=\frac{1}{2}mv^2+q\vec{v}\cdot\vec{A}=\frac{1}{2}m(v_x^2+v_y^2+v_z^2)+q\frac{B}{2}\left(-yv_x+xv_y \right)$$
2) We find the momenta
$$p_{x}=\frac{\partial L}{\partial v_{x}}=mv_{x}-\frac{qBy}{2}$$
$$p_{y}=\frac{\partial L}{\partial v_{y}}=mv_{y}+\frac{qBx}{2} $$
$$ p_{z}=\frac{\partial L}{\partial v_{z}}=mv_{z} $$
3) We express the Hamiltonian, performing a Legrende transformation between velocities and momenta as usual, and solving for the velocities as a function of the coordinates and momenta
$$ v_{x}=\frac{1}{m}\left(p_x+\frac{qBy}{2}\right) $$
$$ v_{y}=\frac{1}{m}\left( p_y-\frac{qBx}{2} \right) $$
$$ v_{z}=\frac{p_{z}}{m} $$
So
$$ H=\sum_{i} p_{i}v_{i}-L\bigg|_{v=v(p,q)}=\frac{p_{x}}{m}\left(p_{x}+\frac{qBy}{2}\right)+\frac{p_{y}}{m}\left(p_{y}-\frac{qBx}{2} \right)+\frac{p_z^2}{m}-\frac{1}{2m}\left[\left(p_{x}+\frac{qBy}{2}\right)^2+\left(p_{y}-\frac{qBx}{2} \right)^2+p_z^2\right]-q\frac{B}{2}\left[-\frac{y}{m}\left(p_{x}+\frac{qBy}{2}\right)+\frac{x}{m}\left(p_{y}-\frac{qBx}{2} \right) \right]$$
Expanding the squares
$$ H=\frac{p_x^2}{m}+\frac{p_xqBy}{2m}+\frac{p_y^2}{m}-\frac{p_yqBx}{2m}+\frac{p_z^2}{m} -\frac{1}{2m}\left(p_x^2+\frac{q^2B^2y^2}{4}+p_xqBy+p_y^2+\frac{q^2B^2x^2}{4}-p_yqBx+\frac{p_{z}^2}{m}\right)-\frac{qB}{2m}\left( -yp_x -\frac{qBy^2}{2}+xp_y-\frac{qBx^2}{2}\right)$$
Taking common factors
$$ H=\frac{p_x^2}{2m}+\frac{p_y^2}{2m}+\frac{p^2_{z}}{2m}+p_{x}\left( \frac{qBy}{2m}-\frac{qBy}{2m}+y\right)+p_y\left( -\frac{qBx}{2m}+\frac{qBx}{2m}-x\right) -\frac{q^2B^2y^2}{2·4m}-\frac{q^2B^2x^2}{2·4m}+\frac{qB^2y^2}{4m}+\frac{qB^2x^2}{4m}$$
Finally
$$H=\frac{p_x^2}{2m}+\frac{p_y^2}{2m}+\frac{p^2_{z}}{2m}+\frac{q^2B^2}{4m}(x^2+y^2)+\frac{qB}{2m}(p_xy-p_yx)$$
In the textbook they problably decided to obviate the $p_z$ because, given that $A_z=0$ the Lagrangian does not depende on $v_z$ so $p_z$ is a constant.