
In above Figure-01 an inertial system $\:\mathrm S'\:$ is translated with respect to the inertial system $\:\mathrm S\:$ with constant velocity
\begin{align}
\boldsymbol{\upsilon} & \boldsymbol{=}\left(\upsilon_{1},\upsilon_{2},\upsilon_{3}\right)
\tag{02a}\label{02a}\\
\upsilon & \boldsymbol{=}\Vert \boldsymbol{\upsilon} \Vert \boldsymbol{=} \sqrt{ \upsilon^2_{1}\boldsymbol{+}\upsilon^2_{2}\boldsymbol{+}\upsilon^2_{3}}\:\in \left(0,c\right)
\tag{02b}\label{02b}
\end{align}
The Lorentz transformation is
\begin{align}
\mathbf{x}^{\boldsymbol{\prime}} & \boldsymbol{=} \mathbf{x}\boldsymbol{+} \dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{x}\right)\boldsymbol{\upsilon}\boldsymbol{-}\dfrac{\gamma\boldsymbol{\upsilon}}{c}c\,t
\tag{03a}\label{03a}\\
c\,t^{\boldsymbol{\prime}} & \boldsymbol{=} \gamma\left(c\,t\boldsymbol{-} \dfrac{\boldsymbol{\upsilon}\boldsymbol{\cdot} \mathbf{x}}{c}\right)
\tag{03b}\label{03b}\\
\gamma & \boldsymbol{=} \left(1\boldsymbol{-}\dfrac{\upsilon^2}{c^2}\right)^{\boldsymbol{-}\frac12}
\tag{03c}\label{03c}
\end{align}
For the Lorentz transformation \eqref{03a}-\eqref{03b}, the vectors $\:\mathbf{E}\:$ and $\:\mathbf{B}\:$ of the electromagnetic field are transformed as follows
\begin{align}
\mathbf{E}' & \boldsymbol{=}\gamma \mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\,\boldsymbol{+}\,\gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right)
\tag{04a}\label{04a}\\
\mathbf{B}' & \boldsymbol{=} \gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\boldsymbol{-}\!\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)
\tag{04b}\label{04b}
\end{align}
Now, if in system $\:\mathrm S\:$ we have $\:\mathbf{B}\boldsymbol{=0}$, then from \eqref{04a}-\eqref{04b}
\begin{align}
\mathbf{E}' & \boldsymbol{=}\gamma \mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}
\tag{05a}\label{05a}\\
\mathbf{B}' & \boldsymbol{=} \boldsymbol{-}\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)
\tag{05b}\label{05b}
\end{align}
Equation \eqref{05b} corresponds to Tong's equation (it remains to explain the minus sign).
From equations \eqref{05a}-\eqref{05b} we have
\begin{align}
\mathbf{B}' & \boldsymbol{=} \boldsymbol{-}\dfrac{\gamma}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}\right)
\boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\gamma\mathbf{E}\right)
\nonumber\\
& \boldsymbol{=} \boldsymbol{-}\dfrac{1}{c^2}\Biggl(\boldsymbol{\upsilon}\boldsymbol{\times}\left[\gamma \mathbf{E}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{E}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\right]\Biggr) \boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right)
\nonumber
\end{align}
that is
\begin{equation}
\mathbf{B}' \boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right)
\tag{06}\label{06}
\end{equation}
Equation \eqref{06} corresponds to Griffiths' equation.
Based on equations \eqref{04a},\eqref{04b} we have proved that
\begin{equation}
\mathbf{B}\boldsymbol{=0}\quad\stackrel{\eqref{04a},\eqref{04b}}{\boldsymbol{=\!=\!=\!\Longrightarrow}}\quad \mathbf{B}' \boldsymbol{+}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right)\boldsymbol{=0}
\tag{06.1}\label{06.1}
\end{equation}
But we can prove the validity of its inverse
\begin{equation}
\mathbf{B}' \boldsymbol{+}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right)\boldsymbol{=0}\quad\stackrel{\eqref{04a},\eqref{04b}}{\boldsymbol{=\!=\!=\!\Longrightarrow}}\quad \mathbf{B}\boldsymbol{=0}
\tag{06.2}\label{06.2}
\end{equation}
So these conditions are equivalent
\begin{equation}
\boxed{\:\:\mathbf{B}\boldsymbol{=0}\quad\stackrel{\eqref{04a},\eqref{04b}}{\boldsymbol{\Longleftarrow\!=\!=\!\Longrightarrow}}\quad \mathbf{B}' \boldsymbol{+}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right)\boldsymbol{=0}\:\:\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}}
\tag{06.3}\label{06.3}
\end{equation}
Equation \eqref{06.2} is valid because
\begin{equation}
\mathbf{B}' \boldsymbol{+}\dfrac{1}{c^2}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{E}'\right)\boldsymbol{=}\gamma^{\boldsymbol{-}1}\mathbf{B}_{\boldsymbol{\perp}} \boldsymbol{+}\mathbf{B}_{\boldsymbol{\parallel}}
\tag{06.4}\label{06.4}
\end{equation}
where $\mathbf{B}_{\boldsymbol{\parallel}},\mathbf{B}_{\boldsymbol{\perp}}$ the components of $\mathbf{B}$ parallel and normal to the velocity vector $\boldsymbol{\upsilon}$ respectively.
$\boldsymbol{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$
$\textbf{ADDENDUM}$
If in system $\:\mathrm S\:$ we have $\:\mathbf{E}\boldsymbol{=0}$, then from \eqref{04a}-\eqref{04b}
\begin{align}
\mathbf{E}' & \boldsymbol{=}\gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right)
\tag{07a}\label{07a}\\
\mathbf{B}' & \boldsymbol{=} \gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}
\tag{07b}\label{07b}
\end{align}
so that
\begin{align}
\mathbf{E}' & \boldsymbol{=} \gamma\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}\right)\boldsymbol{=} \left(\boldsymbol{\upsilon}\boldsymbol{\times}\gamma\mathbf{B}\right)
\nonumber\\
& \boldsymbol{=} \boldsymbol{\upsilon}\boldsymbol{\times}\left[\gamma \mathbf{B}\boldsymbol{-}\dfrac{\gamma^2}{c^2 \left(\gamma\boldsymbol{+}1\right)}\left(\mathbf{B}\boldsymbol{\cdot} \boldsymbol{\upsilon}\right)\boldsymbol{\upsilon}\right] \boldsymbol{=}\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}'
\nonumber
\end{align}
that is
\begin{equation}
\mathbf{E}' \boldsymbol{=}\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}'
\tag{08}\label{08}
\end{equation}
Based on equations \eqref{04a},\eqref{04b} we have proved that
\begin{equation}
\mathbf{E}\boldsymbol{=0}\quad\stackrel{\eqref{04a},\eqref{04b}}{\boldsymbol{=\!=\!=\!\Longrightarrow}}\quad \mathbf{E}' \boldsymbol{-}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}'\right)\boldsymbol{=0}
\tag{08.1}\label{08.1}
\end{equation}
But we can prove the validity of its inverse
\begin{equation}
\mathbf{E}' \boldsymbol{-}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}'\right)\boldsymbol{=0}\quad\stackrel{\eqref{04a},\eqref{04b}}{\boldsymbol{=\!=\!=\!\Longrightarrow}}\quad \mathbf{E}\boldsymbol{=0}
\tag{08.2}\label{08.2}
\end{equation}
So these conditions are equivalent
\begin{equation}
\boxed{\:\:\mathbf{E}\boldsymbol{=0}\quad\stackrel{\eqref{04a},\eqref{04b}}{\boldsymbol{\Longleftarrow\!=\!=\!\Longrightarrow}}\quad \mathbf{E}' \boldsymbol{-}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}'\right)\boldsymbol{=0}\:\:\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}}
\tag{08.3}\label{08.3}
\end{equation}
Equation \eqref{08.2} is valid because
\begin{equation}
\mathbf{E}' \boldsymbol{-}\left(\boldsymbol{\upsilon}\boldsymbol{\times}\mathbf{B}'\right)\boldsymbol{=}\gamma^{\boldsymbol{-}1}\mathbf{E}_{\boldsymbol{\perp}} \boldsymbol{+}\mathbf{E}_{\boldsymbol{\parallel}}
\tag{08.4}\label{08.4}
\end{equation}
where $\mathbf{E}_{\boldsymbol{\parallel}},\mathbf{E}_{\boldsymbol{\perp}}$ the components of $\mathbf{E}$ parallel and normal to the velocity vector $\boldsymbol{\upsilon}$ respectively.
$\boldsymbol{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$
The duality transformation of the electromagnetic field is produced by the replacements
\begin{equation}
\begin{matrix}
\hphantom{c}\mathbf{E}&\boldsymbol{-\!-\!\!\!\longrightarrow}&\boldsymbol{-}c\mathbf{B}\\
c\mathbf{B}&\boldsymbol{-\!-\!\!\!\longrightarrow}&\hphantom{\boldsymbol{-}c}\mathbf{E}
\end{matrix}
\tag{09}\label{09}
\end{equation}
These replacements must be done in the primed system also
\begin{equation}
\begin{matrix}
\hphantom{c}\mathbf{E}'&\boldsymbol{-\!-\!\!\!\longrightarrow}&\boldsymbol{-}c\mathbf{B}'\\
c\mathbf{B}'&\boldsymbol{-\!-\!\!\!\longrightarrow}&\hphantom{\boldsymbol{-}c}\mathbf{E}'
\end{matrix}
\tag{09'}\label{09'}
\end{equation}
In the aforementioned we met pairs of dual equations or expressions, that is under a duality transformation they are transformed one to the other :
\begin{equation}
\begin{matrix}
\eqref{04a}&\stackrel{\mathtt{duality}}{\boldsymbol{\longleftarrow\!\!\!-\!\!\!\longrightarrow}}&\eqref{04b}\\
\eqref{06}&\stackrel{\mathtt{duality}}{\boldsymbol{\longleftarrow\!\!\!-\!\!\!\longrightarrow}}&\eqref{08}\\
\eqref{06.3}&\stackrel{\mathtt{duality}}{\boldsymbol{\longleftarrow\!\!\!-\!\!\!\longrightarrow}}&\eqref{08.3}\\
\eqref{06.4}&\stackrel{\mathtt{duality}}{\boldsymbol{\longleftarrow\!\!\!-\!\!\!\longrightarrow}}&\eqref{08.4}
\end{matrix}
\tag{10}\label{10}
\end{equation}
$\boldsymbol{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$
Equations \eqref{06} and \eqref{08} are the following equations \eqref{12.109} and \eqref{12.110} respectively
\begin{equation}
\boxed{\:\:\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{B}} \boldsymbol{=}\boldsymbol{-}\dfrac{1}{c^2}\left(\mathbf{v}\boldsymbol{\times}\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{E}}\right)\boldsymbol{.}\:\:\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}}
\tag{12.109}\label{12.109}
\end{equation}
\begin{equation}
\boxed{\:\:\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{E}} \boldsymbol{=}\mathbf{v}\boldsymbol{\times}\overset{\boldsymbol{-\!\!\!\!\!-}}{\mathbf{B}}\,\boldsymbol{.}\:\:\vphantom{\dfrac{\tfrac{a}{b}}{\tfrac{a}{b}}}}
\tag{12.110}\label{12.110}
\end{equation}
as shown in ''Introduction to Electrodynamics'' by David J.Griffiths, 3rd Edition 1999.
$\boldsymbol{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$